亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning‐Based Multiparametric MRI Model for Preoperative T‐Stage in Rectal Cancer

医学 接收机工作特性 阶段(地层学) 结直肠癌 T级 逻辑回归 卡帕 放射科 人口 深度学习 癌症 核医学 人工智能 内科学 计算机科学 数学 古生物学 环境卫生 生物 几何学
作者
Yaru Wei,Haojie Wang,Zhongwei Chen,Ying Zhu,Yingfa Li,Beichen Lu,Kehua Pan,Caiyun Wen,Guoquan Cao,Yun He,Jiejie Zhou,Zhifang Pan,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 1083-1092 被引量:17
标识
DOI:10.1002/jmri.28856
摘要

Background Conventional MRI staging can be challenging in the preoperative assessment of rectal cancer. Deep learning methods based on MRI have shown promise in cancer diagnosis and prognostication. However, the value of deep learning in rectal cancer T‐staging is unclear. Purpose To develop a deep learning model based on preoperative multiparametric MRI for evaluation of rectal cancer and to investigate its potential to improve T‐staging accuracy. Study Type Retrospective. Population After cross‐validation, 260 patients (123 with T‐stage T1‐2 and 134 with T‐stage T3‐4) with histopathologically confirmed rectal cancer were randomly divided to the training (N = 208) and test sets (N = 52). Field Strength/Sequence 3.0 T/Dynamic contrast enhanced ( DCE ), T2 ‐weighted imaging ( T2W ), and diffusion‐weighted imaging ( DWI ). Assessment The deep learning (DL) model of multiparametric (DCE, T2W, and DWI) convolutional neural network were constructed for evaluating preoperative diagnosis. The pathological findings served as the reference standard for T‐stage. For comparison, the single parameter DL‐model, a logistic regression model composed of clinical features and subjective assessment of radiologists were used. Statistical Tests The receiver operating characteristic curve (ROC) was used to evaluate the models, the Fleiss' kappa for the intercorrelation coefficients, and DeLong test for compare the diagnostic performance of ROCs. P ‐values less than 0.05 were considered statistically significant. Results The Area Under Curve (AUC) of the multiparametric DL‐model was 0.854, which was significantly higher than the radiologist's assessment (AUC = 0.678), clinical model (AUC = 0.747), and the single parameter DL‐models including T2W‐model (AUC = 0.735), DWI‐model (AUC = 0.759), and DCE‐model (AUC = 0.789). Data Conclusion In the evaluation of rectal cancer patients, the proposed multiparametric DL‐model outperformed the radiologist's assessment, the clinical model as well as the single parameter models. The multiparametric DL‐model has the potential to assist clinicians by providing more reliable and precise preoperative T staging diagnosis. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利萃发布了新的文献求助10
2秒前
hhh完成签到,获得积分10
5秒前
高大的战斗机完成签到,获得积分10
7秒前
mlxlx完成签到,获得积分10
10秒前
wanci应助许瑞琳采纳,获得10
10秒前
Pharmer完成签到,获得积分0
14秒前
18秒前
可爱的函函应助Pharmer采纳,获得10
20秒前
科研通AI2S应助mlxlx采纳,获得10
22秒前
许瑞琳发布了新的文献求助10
23秒前
gszy1975完成签到,获得积分10
25秒前
wanci应助烟消云散采纳,获得10
32秒前
44秒前
李爱国应助Waymaker采纳,获得10
45秒前
拉长的翠发布了新的文献求助10
50秒前
kkk完成签到 ,获得积分10
52秒前
56秒前
1分钟前
俊俊发布了新的文献求助10
1分钟前
1分钟前
好巧发布了新的文献求助10
1分钟前
Yu发布了新的文献求助10
1分钟前
大胆的飞扬完成签到,获得积分10
1分钟前
Waymaker发布了新的文献求助10
1分钟前
俊俊完成签到,获得积分10
1分钟前
吱吱发布了新的文献求助10
1分钟前
吱吱完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
浮游漂漂应助科研通管家采纳,获得10
1分钟前
坚强的蔷薇薇完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
Yu发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764015
求助须知:如何正确求助?哪些是违规求助? 5546598
关于积分的说明 15405744
捐赠科研通 4899473
什么是DOI,文献DOI怎么找? 2635617
邀请新用户注册赠送积分活动 1583805
关于科研通互助平台的介绍 1538922