Deep Learning‐Based Multiparametric MRI Model for Preoperative T‐Stage in Rectal Cancer

医学 接收机工作特性 阶段(地层学) 结直肠癌 T级 逻辑回归 卡帕 放射科 人口 深度学习 癌症 核医学 人工智能 内科学 计算机科学 数学 环境卫生 古生物学 几何学 生物
作者
Yaru Wei,Haojie Wang,Zhongwei Chen,Ying Zhu,Yingfa Li,Beichen Lu,Kehua Pan,Caiyun Wen,Guoquan Cao,Yun He,Jiejie Zhou,Zhifang Pan,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 1083-1092 被引量:17
标识
DOI:10.1002/jmri.28856
摘要

Background Conventional MRI staging can be challenging in the preoperative assessment of rectal cancer. Deep learning methods based on MRI have shown promise in cancer diagnosis and prognostication. However, the value of deep learning in rectal cancer T‐staging is unclear. Purpose To develop a deep learning model based on preoperative multiparametric MRI for evaluation of rectal cancer and to investigate its potential to improve T‐staging accuracy. Study Type Retrospective. Population After cross‐validation, 260 patients (123 with T‐stage T1‐2 and 134 with T‐stage T3‐4) with histopathologically confirmed rectal cancer were randomly divided to the training (N = 208) and test sets (N = 52). Field Strength/Sequence 3.0 T/Dynamic contrast enhanced ( DCE ), T2 ‐weighted imaging ( T2W ), and diffusion‐weighted imaging ( DWI ). Assessment The deep learning (DL) model of multiparametric (DCE, T2W, and DWI) convolutional neural network were constructed for evaluating preoperative diagnosis. The pathological findings served as the reference standard for T‐stage. For comparison, the single parameter DL‐model, a logistic regression model composed of clinical features and subjective assessment of radiologists were used. Statistical Tests The receiver operating characteristic curve (ROC) was used to evaluate the models, the Fleiss' kappa for the intercorrelation coefficients, and DeLong test for compare the diagnostic performance of ROCs. P ‐values less than 0.05 were considered statistically significant. Results The Area Under Curve (AUC) of the multiparametric DL‐model was 0.854, which was significantly higher than the radiologist's assessment (AUC = 0.678), clinical model (AUC = 0.747), and the single parameter DL‐models including T2W‐model (AUC = 0.735), DWI‐model (AUC = 0.759), and DCE‐model (AUC = 0.789). Data Conclusion In the evaluation of rectal cancer patients, the proposed multiparametric DL‐model outperformed the radiologist's assessment, the clinical model as well as the single parameter models. The multiparametric DL‐model has the potential to assist clinicians by providing more reliable and precise preoperative T staging diagnosis. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助璀璨采纳,获得10
刚刚
刚刚
思源应助李小宁采纳,获得10
1秒前
FKVB_完成签到 ,获得积分10
2秒前
清新的马里奥完成签到 ,获得积分10
3秒前
ZXD1989驳回了wlscj应助
3秒前
4秒前
Zxtzzzzz发布了新的文献求助10
5秒前
情怀应助lsc采纳,获得10
5秒前
重要的安寒完成签到,获得积分20
5秒前
6秒前
7秒前
Try完成签到,获得积分10
9秒前
9秒前
科研通AI6应助重要的安寒采纳,获得30
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
烟花应助meng采纳,获得10
12秒前
xalone发布了新的文献求助10
12秒前
12秒前
22完成签到,获得积分10
13秒前
13秒前
蒲公英发布了新的文献求助10
13秒前
Ghy完成签到,获得积分10
13秒前
浮游应助芷兰丁香采纳,获得10
14秒前
浮游应助wjy321采纳,获得10
15秒前
15秒前
璀璨完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
寂寞的惜灵完成签到,获得积分10
16秒前
靓丽瓦驴发布了新的文献求助10
17秒前
悦耳听芹完成签到 ,获得积分10
17秒前
xalone完成签到,获得积分10
18秒前
852应助qingzhiwu采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480303
求助须知:如何正确求助?哪些是违规求助? 4581518
关于积分的说明 14380905
捐赠科研通 4510074
什么是DOI,文献DOI怎么找? 2471649
邀请新用户注册赠送积分活动 1458040
关于科研通互助平台的介绍 1431812