Deep Learning‐Based Multiparametric MRI Model for Preoperative T‐Stage in Rectal Cancer

医学 接收机工作特性 阶段(地层学) 结直肠癌 T级 逻辑回归 卡帕 放射科 曲线下面积 癌症分期 深度学习 癌症 核医学 人工智能 内科学 计算机科学 数学 古生物学 几何学 生物
作者
Xavier Mulet,Haojie Wang,Zhongwei Chen,Ying Zhu,Yingchuan LI,Beichen Lu,Kehua Pan,Caiyun Wen,Guoquan Cao,Yun He,J. Zhou,Zhifang Pan,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:3
标识
DOI:10.1002/jmri.28856
摘要

Background Conventional MRI staging can be challenging in the preoperative assessment of rectal cancer. Deep learning methods based on MRI have shown promise in cancer diagnosis and prognostication. However, the value of deep learning in rectal cancer T‐staging is unclear. Purpose To develop a deep learning model based on preoperative multiparametric MRI for evaluation of rectal cancer and to investigate its potential to improve T‐staging accuracy. Study Type Retrospective. Population After cross‐validation, 260 patients (123 with T‐stage T1‐2 and 134 with T‐stage T3‐4) with histopathologically confirmed rectal cancer were randomly divided to the training (N = 208) and test sets (N = 52). Field Strength/Sequence 3.0 T/Dynamic contrast enhanced ( DCE ), T2 ‐weighted imaging ( T2W ), and diffusion‐weighted imaging ( DWI ). Assessment The deep learning (DL) model of multiparametric (DCE, T2W, and DWI) convolutional neural network were constructed for evaluating preoperative diagnosis. The pathological findings served as the reference standard for T‐stage. For comparison, the single parameter DL‐model, a logistic regression model composed of clinical features and subjective assessment of radiologists were used. Statistical Tests The receiver operating characteristic curve (ROC) was used to evaluate the models, the Fleiss' kappa for the intercorrelation coefficients, and DeLong test for compare the diagnostic performance of ROCs. P ‐values less than 0.05 were considered statistically significant. Results The Area Under Curve (AUC) of the multiparametric DL‐model was 0.854, which was significantly higher than the radiologist's assessment (AUC = 0.678), clinical model (AUC = 0.747), and the single parameter DL‐models including T2W‐model (AUC = 0.735), DWI‐model (AUC = 0.759), and DCE‐model (AUC = 0.789). Data Conclusion In the evaluation of rectal cancer patients, the proposed multiparametric DL‐model outperformed the radiologist's assessment, the clinical model as well as the single parameter models. The multiparametric DL‐model has the potential to assist clinicians by providing more reliable and precise preoperative T staging diagnosis. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助jin采纳,获得10
刚刚
1秒前
共享精神应助郝宝真采纳,获得10
2秒前
河道蟹发布了新的文献求助10
5秒前
小夏完成签到 ,获得积分10
5秒前
zoe完成签到,获得积分10
6秒前
6秒前
8秒前
负责冰烟完成签到,获得积分10
10秒前
小小瑾完成签到,获得积分10
11秒前
闪闪绮露发布了新的文献求助20
11秒前
简单如容发布了新的文献求助30
11秒前
JamesPei应助小白采纳,获得10
12秒前
aheng发布了新的文献求助10
13秒前
牵墨完成签到,获得积分10
13秒前
鲸落发布了新的文献求助10
13秒前
kilig完成签到 ,获得积分10
13秒前
桑梓完成签到,获得积分10
14秒前
14秒前
misong完成签到,获得积分10
14秒前
Ethan完成签到,获得积分10
16秒前
徐老师完成签到,获得积分10
17秒前
18秒前
18秒前
芈冖完成签到,获得积分10
18秒前
个性的紫菜应助HaRd采纳,获得10
18秒前
20秒前
Wait发布了新的文献求助10
21秒前
ww完成签到,获得积分10
22秒前
小白发布了新的文献求助10
25秒前
fgjvythjd完成签到 ,获得积分10
26秒前
小蟹关注了科研通微信公众号
26秒前
王q完成签到,获得积分10
27秒前
汪小白完成签到,获得积分10
27秒前
结实的寄柔应助午后狂睡采纳,获得10
27秒前
平常土豆发布了新的文献求助10
28秒前
领导范儿应助zzw采纳,获得10
28秒前
yong完成签到,获得积分10
28秒前
Emma应助YY采纳,获得20
28秒前
ZZ发布了新的文献求助10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162753
求助须知:如何正确求助?哪些是违规求助? 2813664
关于积分的说明 7901471
捐赠科研通 2473244
什么是DOI,文献DOI怎么找? 1316693
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175