Deep Learning‐Based Multiparametric MRI Model for Preoperative T‐Stage in Rectal Cancer

医学 接收机工作特性 阶段(地层学) 结直肠癌 T级 逻辑回归 卡帕 放射科 人口 深度学习 癌症 核医学 人工智能 内科学 计算机科学 数学 古生物学 环境卫生 生物 几何学
作者
Yaru Wei,Haojie Wang,Zhongwei Chen,Ying Zhu,Yingfa Li,Beichen Lu,Kehua Pan,Caiyun Wen,Guoquan Cao,Yun He,Jiejie Zhou,Zhifang Pan,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 1083-1092 被引量:17
标识
DOI:10.1002/jmri.28856
摘要

Background Conventional MRI staging can be challenging in the preoperative assessment of rectal cancer. Deep learning methods based on MRI have shown promise in cancer diagnosis and prognostication. However, the value of deep learning in rectal cancer T‐staging is unclear. Purpose To develop a deep learning model based on preoperative multiparametric MRI for evaluation of rectal cancer and to investigate its potential to improve T‐staging accuracy. Study Type Retrospective. Population After cross‐validation, 260 patients (123 with T‐stage T1‐2 and 134 with T‐stage T3‐4) with histopathologically confirmed rectal cancer were randomly divided to the training (N = 208) and test sets (N = 52). Field Strength/Sequence 3.0 T/Dynamic contrast enhanced ( DCE ), T2 ‐weighted imaging ( T2W ), and diffusion‐weighted imaging ( DWI ). Assessment The deep learning (DL) model of multiparametric (DCE, T2W, and DWI) convolutional neural network were constructed for evaluating preoperative diagnosis. The pathological findings served as the reference standard for T‐stage. For comparison, the single parameter DL‐model, a logistic regression model composed of clinical features and subjective assessment of radiologists were used. Statistical Tests The receiver operating characteristic curve (ROC) was used to evaluate the models, the Fleiss' kappa for the intercorrelation coefficients, and DeLong test for compare the diagnostic performance of ROCs. P ‐values less than 0.05 were considered statistically significant. Results The Area Under Curve (AUC) of the multiparametric DL‐model was 0.854, which was significantly higher than the radiologist's assessment (AUC = 0.678), clinical model (AUC = 0.747), and the single parameter DL‐models including T2W‐model (AUC = 0.735), DWI‐model (AUC = 0.759), and DCE‐model (AUC = 0.789). Data Conclusion In the evaluation of rectal cancer patients, the proposed multiparametric DL‐model outperformed the radiologist's assessment, the clinical model as well as the single parameter models. The multiparametric DL‐model has the potential to assist clinicians by providing more reliable and precise preoperative T staging diagnosis. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vvA11发布了新的文献求助10
1秒前
脑洞疼应助suye采纳,获得10
1秒前
2秒前
2秒前
航航完成签到,获得积分20
3秒前
小蘑菇应助健忘捕采纳,获得10
3秒前
4秒前
4秒前
要减肥完成签到,获得积分10
4秒前
4秒前
和谐青柏应助popo采纳,获得10
4秒前
5秒前
牛奶糖完成签到,获得积分10
5秒前
悠悠发布了新的文献求助10
5秒前
Jasper应助Yu采纳,获得100
5秒前
5秒前
乐乐应助善良的血茗采纳,获得10
5秒前
niobelynn发布了新的文献求助10
6秒前
6秒前
极夜完成签到,获得积分10
6秒前
6秒前
6秒前
bullyr关注了科研通微信公众号
7秒前
脑洞疼应助昵称采纳,获得10
7秒前
7秒前
土白完成签到,获得积分10
7秒前
8秒前
巧克李发布了新的文献求助10
8秒前
8秒前
8秒前
Kang发布了新的文献求助10
9秒前
高高问夏发布了新的文献求助10
9秒前
Han发布了新的文献求助10
9秒前
Liangc333完成签到 ,获得积分10
10秒前
hsa_ID发布了新的文献求助10
10秒前
11秒前
山楂球发布了新的文献求助10
11秒前
青山完成签到 ,获得积分10
11秒前
乌鲁鲁发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624445
求助须知:如何正确求助?哪些是违规求助? 4710318
关于积分的说明 14950073
捐赠科研通 4778363
什么是DOI,文献DOI怎么找? 2553244
邀请新用户注册赠送积分活动 1515179
关于科研通互助平台的介绍 1475520