亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning‐Based Multiparametric MRI Model for Preoperative T‐Stage in Rectal Cancer

医学 接收机工作特性 阶段(地层学) 结直肠癌 T级 逻辑回归 卡帕 放射科 人口 深度学习 癌症 核医学 人工智能 内科学 计算机科学 数学 古生物学 环境卫生 生物 几何学
作者
Yaru Wei,Haojie Wang,Zhongwei Chen,Ying Zhu,Yingfa Li,Beichen Lu,Kehua Pan,Caiyun Wen,Guoquan Cao,Yun He,Jiejie Zhou,Zhifang Pan,Meihao Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 1083-1092 被引量:17
标识
DOI:10.1002/jmri.28856
摘要

Background Conventional MRI staging can be challenging in the preoperative assessment of rectal cancer. Deep learning methods based on MRI have shown promise in cancer diagnosis and prognostication. However, the value of deep learning in rectal cancer T‐staging is unclear. Purpose To develop a deep learning model based on preoperative multiparametric MRI for evaluation of rectal cancer and to investigate its potential to improve T‐staging accuracy. Study Type Retrospective. Population After cross‐validation, 260 patients (123 with T‐stage T1‐2 and 134 with T‐stage T3‐4) with histopathologically confirmed rectal cancer were randomly divided to the training (N = 208) and test sets (N = 52). Field Strength/Sequence 3.0 T/Dynamic contrast enhanced ( DCE ), T2 ‐weighted imaging ( T2W ), and diffusion‐weighted imaging ( DWI ). Assessment The deep learning (DL) model of multiparametric (DCE, T2W, and DWI) convolutional neural network were constructed for evaluating preoperative diagnosis. The pathological findings served as the reference standard for T‐stage. For comparison, the single parameter DL‐model, a logistic regression model composed of clinical features and subjective assessment of radiologists were used. Statistical Tests The receiver operating characteristic curve (ROC) was used to evaluate the models, the Fleiss' kappa for the intercorrelation coefficients, and DeLong test for compare the diagnostic performance of ROCs. P ‐values less than 0.05 were considered statistically significant. Results The Area Under Curve (AUC) of the multiparametric DL‐model was 0.854, which was significantly higher than the radiologist's assessment (AUC = 0.678), clinical model (AUC = 0.747), and the single parameter DL‐models including T2W‐model (AUC = 0.735), DWI‐model (AUC = 0.759), and DCE‐model (AUC = 0.789). Data Conclusion In the evaluation of rectal cancer patients, the proposed multiparametric DL‐model outperformed the radiologist's assessment, the clinical model as well as the single parameter models. The multiparametric DL‐model has the potential to assist clinicians by providing more reliable and precise preoperative T staging diagnosis. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
enternow完成签到 ,获得积分10
1分钟前
科研通AI2S应助紫色奶萨采纳,获得10
1分钟前
庾摇伽完成签到 ,获得积分10
1分钟前
1分钟前
紫色奶萨发布了新的文献求助10
1分钟前
考拉完成签到 ,获得积分10
2分钟前
从来都不会放弃zr完成签到,获得积分10
2分钟前
2分钟前
就_爱_呀发布了新的文献求助30
2分钟前
NexusExplorer应助紫色奶萨采纳,获得10
2分钟前
Perry完成签到,获得积分10
2分钟前
紫色奶萨完成签到,获得积分10
2分钟前
星辰大海应助就_爱_呀采纳,获得30
3分钟前
jeronimo完成签到,获得积分10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
3分钟前
El发布了新的文献求助10
3分钟前
4分钟前
紫色奶萨发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
深情安青应助科研通管家采纳,获得10
5分钟前
5分钟前
就_爱_呀发布了新的文献求助30
5分钟前
Jessica完成签到,获得积分10
6分钟前
zsmj23完成签到 ,获得积分0
8分钟前
8分钟前
量子星尘发布了新的文献求助10
9分钟前
呆呆的猕猴桃完成签到 ,获得积分10
10分钟前
10分钟前
也是难得取个名完成签到 ,获得积分10
11分钟前
行走完成签到,获得积分10
11分钟前
Jasper应助科研通管家采纳,获得10
11分钟前
11分钟前
11分钟前
11分钟前
12分钟前
12分钟前
12分钟前
李攀发布了新的文献求助10
12分钟前
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4995784
求助须知:如何正确求助?哪些是违规求助? 4242607
关于积分的说明 13216289
捐赠科研通 4038720
什么是DOI,文献DOI怎么找? 2209834
邀请新用户注册赠送积分活动 1220625
关于科研通互助平台的介绍 1139683