Automated glacier extraction using a Transformer based deep learning approach from multi-sensor remote sensing imagery

航天飞机雷达地形任务 数字高程模型 遥感 合成孔径雷达 冰川 基本事实 人工智能 计算机科学 雷达 多光谱图像 地质学 地貌学 电信
作者
Yanfei Peng,Jiang He,Qiangqiang Yuan,Shouxing Wang,Xinde Chu,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 303-313 被引量:6
标识
DOI:10.1016/j.isprsjprs.2023.06.015
摘要

Glaciers serve as sensitive indicators of climate change, making accurate glacier boundary delineation crucial for understanding their response to environmental and local factors. However, traditional semi-automatic remote sensing methods for glacier extraction lack precision and fail to fully leverage multi-source data. In this study, we propose a Transformer-based deep learning approach to address these limitations. Our method employs a U-Net architecture with a Local-Global Transformer (LGT) encoder and multiple Local-Global CNN Blocks (LGCB) in the decoder. The model design aims to integrate both global and local information. Training data for the model were generated using Sentinel-1 Synthetic Aperture Radar (SAR) data, Sentinel-2 multispectral data, High Mountain Asia (HMA) Digital Elevation Model (DEM), and Shuttle Radar Topography Mission(SRTM) DEM. The ground truth was obtained for a glaciated area of 1498.06 km2 in the Qilian mountains using classic band ratio and manual delineation based on 2 m resolution GaoFen (GF) imagery. A series of experiments including the comparison between different models, model modules and data combinations were conducted to evaluate the model accuracy. The best overall accuracy achieved was 0.972. Additionally, our findings highlight the significant contribution of Sentinel-2 data to glacier extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逍遥发布了新的文献求助10
1秒前
FashionBoy应助无限芝麻采纳,获得10
2秒前
颜夕发布了新的文献求助10
3秒前
qqqq发布了新的文献求助10
5秒前
酷炫抽屉完成签到 ,获得积分10
6秒前
慕青应助闪耀的启明星采纳,获得10
7秒前
9秒前
GQC应助东十八采纳,获得10
10秒前
12秒前
14秒前
15秒前
彭于晏应助化学y采纳,获得10
16秒前
霸气的香芦完成签到,获得积分10
16秒前
17秒前
斯文败类应助满意花生采纳,获得10
19秒前
19秒前
小陶发布了新的文献求助10
20秒前
汉堡包应助魔幻灯泡采纳,获得10
20秒前
24秒前
共享精神应助Yeol采纳,获得30
25秒前
26秒前
钱嘉裕应助ChenyuTian采纳,获得10
27秒前
传奇3应助雷寒云采纳,获得10
27秒前
27秒前
28秒前
星辰大海应助岳先生采纳,获得10
29秒前
坚强的纸飞机完成签到,获得积分10
30秒前
Ablaike发布了新的文献求助10
32秒前
酷波er应助科研通管家采纳,获得10
32秒前
今后应助科研通管家采纳,获得10
32秒前
今后应助科研通管家采纳,获得10
32秒前
思源应助科研通管家采纳,获得10
32秒前
ding应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
桐桐应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
乐乐应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
小二郎应助科研通管家采纳,获得10
33秒前
Arrow完成签到,获得积分10
34秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207432
求助须知:如何正确求助?哪些是违规求助? 2856761
关于积分的说明 8107137
捐赠科研通 2522079
什么是DOI,文献DOI怎么找? 1355350
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613478