亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated glacier extraction using a Transformer based deep learning approach from multi-sensor remote sensing imagery

航天飞机雷达地形任务 数字高程模型 遥感 合成孔径雷达 冰川 基本事实 人工智能 计算机科学 雷达 多光谱图像 地质学 地貌学 电信
作者
Yanfei Peng,Jiang He,Qiangqiang Yuan,Shouxing Wang,Xinde Chu,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:202: 303-313 被引量:25
标识
DOI:10.1016/j.isprsjprs.2023.06.015
摘要

Glaciers serve as sensitive indicators of climate change, making accurate glacier boundary delineation crucial for understanding their response to environmental and local factors. However, traditional semi-automatic remote sensing methods for glacier extraction lack precision and fail to fully leverage multi-source data. In this study, we propose a Transformer-based deep learning approach to address these limitations. Our method employs a U-Net architecture with a Local-Global Transformer (LGT) encoder and multiple Local-Global CNN Blocks (LGCB) in the decoder. The model design aims to integrate both global and local information. Training data for the model were generated using Sentinel-1 Synthetic Aperture Radar (SAR) data, Sentinel-2 multispectral data, High Mountain Asia (HMA) Digital Elevation Model (DEM), and Shuttle Radar Topography Mission(SRTM) DEM. The ground truth was obtained for a glaciated area of 1498.06 km2 in the Qilian mountains using classic band ratio and manual delineation based on 2 m resolution GaoFen (GF) imagery. A series of experiments including the comparison between different models, model modules and data combinations were conducted to evaluate the model accuracy. The best overall accuracy achieved was 0.972. Additionally, our findings highlight the significant contribution of Sentinel-2 data to glacier extraction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
43秒前
51秒前
54秒前
1分钟前
1分钟前
1分钟前
闪明火龙果完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
今后应助rebeycca采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
AliEmbark完成签到,获得积分10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
VDC应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
抹不掉的记忆完成签到,获得积分10
4分钟前
Swear完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Endless完成签到,获得积分10
4分钟前
安详的尔岚完成签到,获得积分10
4分钟前
nenoaowu发布了新的文献求助10
4分钟前
NI完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780479
求助须知:如何正确求助?哪些是违规求助? 5656040
关于积分的说明 15453184
捐赠科研通 4911071
什么是DOI,文献DOI怎么找? 2643267
邀请新用户注册赠送积分活动 1590941
关于科研通互助平台的介绍 1545457