3D-CNNHSR: A 3-Dimensional Convolutional Neural Network for Hyperspectral Super-Resolution

高光谱成像 卷积神经网络 人工智能 计算机科学 分辨率(逻辑) 模式识别(心理学) 遥感 地质学
作者
Mohd Anul Haq,Siwar Ben Hadj Hassine,Sharaf J. Malebary,Hakeem A. Othman,Sayed M. Eldin
出处
期刊:Computer systems science and engineering [Computers, Materials and Continua (Tech Science Press)]
卷期号:47 (2): 2689-2705 被引量:18
标识
DOI:10.32604/csse.2023.039904
摘要

Hyperspectral images can easily discriminate different materials due to their fine spectral resolution. However, obtaining a hyperspectral image (HSI) with a high spatial resolution is still a challenge as we are limited by the high computing requirements. The spatial resolution of HSI can be enhanced by utilizing Deep Learning (DL) based Super-resolution (SR). A 3D-CNNHSR model is developed in the present investigation for 3D spatial super-resolution for HSI, without losing the spectral content. The 3D-CNNHSR model was tested for the Hyperion HSI. The pre-processing of the HSI was done before applying the SR model so that the full advantage of hyperspectral data can be utilized with minimizing the errors. The key innovation of the present investigation is that it used 3D convolution as it simultaneously applies convolution in both the spatial and spectral dimensions and captures spatial-spectral features. By clustering contiguous spectral content together, a cube is formed and by convolving the cube with the 3D kernel a 3D convolution is realized. The 3D-CNNHSR model was compared with a 2D-CNN model, additionally, the assessment was based on higher-resolution data from the Sentinel-2 satellite. Based on the evaluation metrics it was observed that the 3D-CNNHSR model yields better results for the SR of HSI with efficient computational speed, which is significantly less than previous studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沸羊羊发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
夕照古风发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
迷迭香完成签到,获得积分10
2秒前
fish完成签到,获得积分10
3秒前
178181发布了新的文献求助10
4秒前
TaoBijiang发布了新的文献求助10
4秒前
5秒前
椰子粉发布了新的文献求助10
5秒前
852应助waddyg采纳,获得30
6秒前
ayayaya发布了新的文献求助10
6秒前
吴钩霜雪明完成签到 ,获得积分10
6秒前
谦让梦旋发布了新的文献求助10
6秒前
可爱的函函应助Yuson_L采纳,获得10
7秒前
李李发布了新的文献求助10
7秒前
8秒前
9秒前
Yunis完成签到,获得积分10
9秒前
9秒前
朱建军应助BK_采纳,获得10
10秒前
KhalilHao完成签到,获得积分10
10秒前
机灵烨华完成签到 ,获得积分10
11秒前
传奇3应助月下荷花采纳,获得10
12秒前
12秒前
12秒前
12秒前
Reese完成签到,获得积分10
12秒前
12秒前
musejie应助relevance采纳,获得10
13秒前
13秒前
朱建军应助178181采纳,获得10
13秒前
SHAO应助178181采纳,获得30
13秒前
思源应助名字是乱码采纳,获得10
13秒前
大模型应助嘉的科研采纳,获得10
13秒前
小王子发布了新的文献求助10
14秒前
缺粥发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979146
求助须知:如何正确求助?哪些是违规求助? 3523056
关于积分的说明 11215854
捐赠科研通 3260487
什么是DOI,文献DOI怎么找? 1800049
邀请新用户注册赠送积分活动 878813
科研通“疑难数据库(出版商)”最低求助积分说明 807092