3D-CNNHSR: A 3-Dimensional Convolutional Neural Network for Hyperspectral Super-Resolution

高光谱成像 卷积神经网络 人工智能 计算机科学 分辨率(逻辑) 模式识别(心理学) 遥感 地质学
作者
Mohd Anul Haq,Siwar Ben Hadj Hassine,Sharaf J. Malebary,Hakeem A. Othman,Sayed M. Eldin
出处
期刊:Computer systems science and engineering [Computers, Materials and Continua (Tech Science Press)]
卷期号:47 (2): 2689-2705 被引量:18
标识
DOI:10.32604/csse.2023.039904
摘要

Hyperspectral images can easily discriminate different materials due to their fine spectral resolution. However, obtaining a hyperspectral image (HSI) with a high spatial resolution is still a challenge as we are limited by the high computing requirements. The spatial resolution of HSI can be enhanced by utilizing Deep Learning (DL) based Super-resolution (SR). A 3D-CNNHSR model is developed in the present investigation for 3D spatial super-resolution for HSI, without losing the spectral content. The 3D-CNNHSR model was tested for the Hyperion HSI. The pre-processing of the HSI was done before applying the SR model so that the full advantage of hyperspectral data can be utilized with minimizing the errors. The key innovation of the present investigation is that it used 3D convolution as it simultaneously applies convolution in both the spatial and spectral dimensions and captures spatial-spectral features. By clustering contiguous spectral content together, a cube is formed and by convolving the cube with the 3D kernel a 3D convolution is realized. The 3D-CNNHSR model was compared with a 2D-CNN model, additionally, the assessment was based on higher-resolution data from the Sentinel-2 satellite. Based on the evaluation metrics it was observed that the 3D-CNNHSR model yields better results for the SR of HSI with efficient computational speed, which is significantly less than previous studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒畅完成签到,获得积分10
刚刚
周舟发布了新的文献求助10
刚刚
sy发布了新的文献求助10
1秒前
wwt发布了新的文献求助10
2秒前
丰知然应助李默庵啊采纳,获得10
2秒前
3秒前
肉松发布了新的文献求助10
3秒前
丘比特应助研友_nxwBJL采纳,获得20
3秒前
1x1发布了新的文献求助10
3秒前
手残症发布了新的文献求助10
3秒前
扶余山本完成签到 ,获得积分10
3秒前
iNk应助sy采纳,获得10
5秒前
7秒前
华仔应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
大个应助科研通管家采纳,获得10
7秒前
明理念文应助科研通管家采纳,获得60
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
Orange应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
朝花夕拾发布了新的文献求助10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得30
8秒前
友好白凡完成签到,获得积分10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
8秒前
烟花应助科研通管家采纳,获得10
9秒前
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
拼搏向上发布了新的文献求助10
10秒前
轩辕寄风完成签到,获得积分10
10秒前
mimi完成签到,获得积分10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292679
求助须知:如何正确求助?哪些是违规求助? 2928963
关于积分的说明 8439431
捐赠科研通 2601082
什么是DOI,文献DOI怎么找? 1419525
科研通“疑难数据库(出版商)”最低求助积分说明 660310
邀请新用户注册赠送积分活动 642969