Entropy to Mitigate Non-IID Data Problem on Federated Learning for the Edge Intelligence Environment

计算机科学 熵(时间箭头) 人工智能 GSM演进的增强数据速率 机器学习 数据挖掘 量子力学 物理
作者
Fernanda C. Orlandi,Julio César Santos dos Anjos,Valderi Reis Quietinho Leithardt,Juan F. De Paz,Cláudio F. R. Geyer
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 78845-78857 被引量:14
标识
DOI:10.1109/access.2023.3298704
摘要

Machine Learning (ML) algorithms process input data making it possible to recognize and extract patterns from a large data volume. Likewise, Internet of Things (IoT) devices provide knowledge in a Federated Learning (FL) environment, sharing parameters without compromising their raw data. However, FL suffers with non-independent and identically distributed (non-iid) data, which means it is heterogeneos data and has biased input data, such as in smartphone data sources. This bias causes low convergence for ML algorithms, high energy and bandwidth consumption. This work proposes a method that mitigates non-iid data through a FedAvg-BE algorithm that provides Federated Learning with the border entropy evaluation to select good input from a non-iid data environment. Extensive experiments were performed using publicly available datasets to train deep neural networks. The experiment result evaluation demonstrates that execution time saves up to 22% for the MNIST dataset and 26% for the CIFAR-10 dataset, with the proposed model in Federated Learning settings. The results demonstrate the feasibility of the proposed model to mitigate non-iid data impact.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包子完成签到,获得积分10
1秒前
1秒前
研友_LOqqmZ完成签到 ,获得积分10
2秒前
2秒前
情怀应助dudu采纳,获得10
2秒前
星际完成签到,获得积分10
3秒前
3秒前
共勉完成签到,获得积分10
3秒前
3秒前
MM完成签到,获得积分10
4秒前
刘晶完成签到,获得积分10
4秒前
Shiku完成签到,获得积分10
4秒前
4秒前
4秒前
追寻夜安完成签到,获得积分10
5秒前
情怀应助wllllll采纳,获得10
5秒前
务实的数据线应助songsong采纳,获得20
6秒前
kk完成签到,获得积分10
6秒前
科研通AI5应助欣喜沛芹采纳,获得50
7秒前
脑洞疼应助niekyang采纳,获得10
8秒前
一一完成签到,获得积分10
8秒前
8秒前
CipherSage应助虚幻初之采纳,获得10
8秒前
9秒前
大漂亮完成签到,获得积分10
9秒前
fmy_being完成签到,获得积分10
9秒前
西西完成签到,获得积分10
9秒前
你你你发布了新的文献求助10
9秒前
务实的手套完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
完美世界应助好好采纳,获得10
10秒前
11秒前
dudu完成签到,获得积分10
11秒前
12秒前
yy完成签到,获得积分10
12秒前
科目三应助糖糖采纳,获得10
12秒前
善学以致用应助qq采纳,获得10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729962
求助须知:如何正确求助?哪些是违规求助? 3274817
关于积分的说明 9989012
捐赠科研通 2990256
什么是DOI,文献DOI怎么找? 1640957
邀请新用户注册赠送积分活动 779507
科研通“疑难数据库(出版商)”最低求助积分说明 748235