胶束
PEG比率
化学
粒径
费斯特共振能量转移
化学工程
生物物理学
间隙
体内
色谱法
荧光
有机化学
水溶液
物理化学
量子力学
工程类
经济
生物
医学
物理
泌尿科
生物技术
财务
作者
Chen Guo,Haoyang Yuan,Ying Yu,Zhencheng Gao,Yu Zhang,Tian Yin,Haibing He,Jingxin Gou,Xing Tang
标识
DOI:10.1016/j.jconrel.2023.07.026
摘要
Various attributes of micelles, such as PEG density and particle size, are considered to be related to blood clearance. The structural stability of micelles is another key attribute that will affect the in vivo fate. This study employed fluorescence resonance energy transfer (FRET) analysis to guide the preparation of polymeric micelles with different structural stability. Micelles prepared using copolymers with longer hydrophobic blocks showed higher structural stability; emulsification was a better method than nanoprecipitation to prepare stable micelles. The fast chain exchange kinetics and the high-water content of micellar cores explained the low structural stability of those micelles. Moreover, this study highlighted the importance of structural stability that affected blood clearance in concert with PEG length and particle size. One-third of the small and stable micelles were detected in the blood 24 h after injection. While unstable micelles would be cleared from the circulation within 4 h. Notably, there would be a threshold of structural stability. Micelles with structural stability below this threshold were quickly cleared even if they possessed a longer PEG length and a smaller size. In contrast, higher structural stability allowed polymeric micelles to maintain higher integrity in vivo and enhance tumor accumulation and anti-tumor efficacy. In conclusion, this study systematically analyzed the importance of the structural stability of micelles on the in vivo fate.
科研通智能强力驱动
Strongly Powered by AbleSci AI