[Advances in machine learning for predicting protein functions].

计算机科学 人工智能 机器学习 功能(生物学) 多样性(控制论) 计算生物学 注释 过程(计算) 领域(数学) 生物 数学 进化生物学 操作系统 纯数学
作者
Yingnan Chi,Chun Li,Xudong Feng
出处
期刊:PubMed 卷期号:39 (6): 2141-2157
标识
DOI:10.13345/j.cjb.221002
摘要

Proteins play a variety of functional roles in cellular activities and are indispensable for life. Understanding the functions of proteins is crucial in many fields such as medicine and drug development. In addition, the application of enzymes in green synthesis has been of great interest, but the high cost of obtaining specific functional enzymes as well as the variety of enzyme types and functions hamper their application. At present, the specific functions of proteins are mainly determined through tedious and time-consuming experimental characterization. With the rapid development of bioinformatics and sequencing technologies, the number of protein sequences that have been sequenced is much larger than those can be annotated, thus developing efficient methods for predicting protein functions becomes crucial. With the rapid development of computer technology, data-driven machine learning methods have become a promising solution to these challenges. This review provides an overview of protein function and its annotation methods as well as the development history and operation process of machine learning. In combination with the application of machine learning in the field of enzyme function prediction, we present an outlook on the future direction of efficient artificial intelligence-assisted protein function research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Qq发布了新的文献求助10
1秒前
烟花应助小庄采纳,获得10
2秒前
2秒前
2秒前
yy完成签到,获得积分10
3秒前
4秒前
sivan完成签到,获得积分10
4秒前
4秒前
kiki完成签到,获得积分10
4秒前
上官若男应助LS采纳,获得10
5秒前
敛矜发布了新的文献求助10
6秒前
搞怪哑铃发布了新的文献求助10
7秒前
越遇发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
mengxiaofeng发布了新的文献求助10
9秒前
aaaaaa发布了新的文献求助10
9秒前
huazhangchina发布了新的文献求助30
9秒前
四福祥发布了新的文献求助10
10秒前
邓佳鑫Alan应助kiki采纳,获得10
11秒前
11秒前
13秒前
SciGPT应助fff123采纳,获得10
13秒前
14秒前
14秒前
16秒前
Qq完成签到,获得积分10
17秒前
17秒前
17秒前
张懒懒完成签到 ,获得积分10
17秒前
敛矜完成签到,获得积分10
18秒前
万能图书馆应助aaaaaa采纳,获得10
18秒前
寒士完成签到,获得积分10
18秒前
hth发布了新的文献求助10
19秒前
一丢丢发布了新的文献求助10
20秒前
四福祥完成签到,获得积分10
21秒前
21秒前
xl发布了新的文献求助10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444222
求助须知:如何正确求助?哪些是违规求助? 3040268
关于积分的说明 8980686
捐赠科研通 2728913
什么是DOI,文献DOI怎么找? 1496761
科研通“疑难数据库(出版商)”最低求助积分说明 691858
邀请新用户注册赠送积分活动 689393