Pre-trained Model Based Feature Envy Detection

计算机科学 代码气味 特征(语言学) 编码(集合论) 语义学(计算机科学) 人工智能 启发式 公制(单位) 机器学习 源代码 自然语言处理 软件 情报检索 软件开发 软件质量 程序设计语言 工程类 哲学 集合(抽象数据类型) 语言学 运营管理
作者
Wenhao Ma,Yaoxiang Yu,Xiaoming Ruan,Bo Cai
标识
DOI:10.1109/msr59073.2023.00065
摘要

Code smells slow down software system development and makes them harder to maintain. Existing research aims to develop automatic detection algorithms to reduce the labor and time costs within the detection process. Deep learning techniques have recently been demonstrated to enhance the performance of recognizing code smells even more than metric-based heuristic detection algorithms. As large-scale pre-trained models for Programming Languages (PL), such as CodeT5, have lately achieved the top results in a variety of downstream tasks, some researchers begin to explore the use of pre-trained models to extract the contextual semantics of code to detect code smells. However, little research has employed contextual code semantics relationship between code snippets obtained by pre-trained models to identify code smells. In this paper, we investigate the use of the pre-trained model CodeT5 to extract semantic relationships between code snippets to detect feature envy, which is one of the most common code smells. In addition, to investigate the performance of these semantic relationships extracted by pre-trained models of different architectures on detecting feature envy, we compare CodeT5 with two other pre-trained models CodeBERT and CodeGPT. We have performed our experimental evaluation on ten open-source projects, our approach improves F-measure by 29.32% on feature envy detection and 16.57% on moving destination recommendation. Using semantic relations extracted by several pre-trained models to detect feature envy outperforms the state-of-the-art. This shows that using this semantic relation to detect feature envy is promising. To enable future research on feature envy detection, we have made all the code and datasets utilized in this article open source.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助AndyDong采纳,获得10
刚刚
yang完成签到 ,获得积分10
1秒前
星辰大海应助我行我素采纳,获得10
1秒前
大个应助sunyanghu369采纳,获得10
1秒前
copper发布了新的文献求助10
1秒前
可乐龙猫发布了新的文献求助10
1秒前
1秒前
墓轩发布了新的文献求助10
2秒前
ZhaoJiaheng完成签到,获得积分20
2秒前
韩梅完成签到,获得积分20
2秒前
2秒前
2秒前
临风完成签到,获得积分10
3秒前
houruibut发布了新的文献求助10
3秒前
3秒前
3秒前
友好汪完成签到,获得积分10
3秒前
llll发布了新的文献求助10
3秒前
outlaw_chen完成签到,获得积分10
3秒前
冰选若南完成签到,获得积分20
3秒前
qiqi完成签到 ,获得积分10
4秒前
4秒前
珞咔完成签到,获得积分20
4秒前
4秒前
Jasper应助Aurora采纳,获得10
4秒前
星辰大海应助逆风起笔采纳,获得10
4秒前
yulong发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
丘比特应助syy080837采纳,获得30
5秒前
5秒前
传奇3应助Wqhao采纳,获得10
6秒前
7秒前
7秒前
zhihaiyu发布了新的文献求助10
7秒前
学习完成签到 ,获得积分10
7秒前
CodeCraft应助四季安采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238