Pre-trained Model Based Feature Envy Detection

计算机科学 代码气味 特征(语言学) 编码(集合论) 语义学(计算机科学) 人工智能 启发式 公制(单位) 机器学习 源代码 自然语言处理 软件 情报检索 软件开发 软件质量 程序设计语言 工程类 哲学 集合(抽象数据类型) 语言学 运营管理
作者
Wenhao Ma,Yaoxiang Yu,Xiaoming Ruan,Bo Cai
标识
DOI:10.1109/msr59073.2023.00065
摘要

Code smells slow down software system development and makes them harder to maintain. Existing research aims to develop automatic detection algorithms to reduce the labor and time costs within the detection process. Deep learning techniques have recently been demonstrated to enhance the performance of recognizing code smells even more than metric-based heuristic detection algorithms. As large-scale pre-trained models for Programming Languages (PL), such as CodeT5, have lately achieved the top results in a variety of downstream tasks, some researchers begin to explore the use of pre-trained models to extract the contextual semantics of code to detect code smells. However, little research has employed contextual code semantics relationship between code snippets obtained by pre-trained models to identify code smells. In this paper, we investigate the use of the pre-trained model CodeT5 to extract semantic relationships between code snippets to detect feature envy, which is one of the most common code smells. In addition, to investigate the performance of these semantic relationships extracted by pre-trained models of different architectures on detecting feature envy, we compare CodeT5 with two other pre-trained models CodeBERT and CodeGPT. We have performed our experimental evaluation on ten open-source projects, our approach improves F-measure by 29.32% on feature envy detection and 16.57% on moving destination recommendation. Using semantic relations extracted by several pre-trained models to detect feature envy outperforms the state-of-the-art. This shows that using this semantic relation to detect feature envy is promising. To enable future research on feature envy detection, we have made all the code and datasets utilized in this article open source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hwen完成签到,获得积分10
刚刚
susu完成签到,获得积分10
刚刚
英姑应助冷静飞柏采纳,获得10
1秒前
2秒前
2秒前
3秒前
Ryan发布了新的文献求助10
3秒前
4秒前
4秒前
cangye完成签到,获得积分10
4秒前
温暖霸完成签到,获得积分10
4秒前
JINX发布了新的文献求助10
5秒前
卉酱发布了新的文献求助30
5秒前
蔡万润完成签到 ,获得积分10
5秒前
完美世界应助大气千柳采纳,获得10
5秒前
5秒前
5秒前
6秒前
小叶发布了新的文献求助30
6秒前
ketaman完成签到,获得积分10
7秒前
7秒前
lxl发布了新的文献求助10
9秒前
9秒前
weidongwu发布了新的文献求助10
9秒前
鳗鱼灵寒发布了新的文献求助10
9秒前
sonder发布了新的文献求助10
10秒前
10秒前
青云完成签到,获得积分10
10秒前
CodeCraft应助旺旺小仙贝采纳,获得10
10秒前
11秒前
小破网完成签到 ,获得积分0
11秒前
12秒前
才下眉头发布了新的文献求助10
12秒前
何为会完成签到,获得积分10
12秒前
12秒前
小鱼完成签到,获得积分10
13秒前
jiaru发布了新的文献求助10
13秒前
joker完成签到,获得积分10
13秒前
小D朵朵拉发布了新的文献求助10
13秒前
ttrr发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600