Pre-trained Model Based Feature Envy Detection

计算机科学 代码气味 特征(语言学) 编码(集合论) 语义学(计算机科学) 人工智能 启发式 公制(单位) 机器学习 源代码 自然语言处理 软件 情报检索 软件开发 软件质量 程序设计语言 工程类 哲学 集合(抽象数据类型) 语言学 运营管理
作者
Wenhao Ma,Yaoxiang Yu,Xiaoming Ruan,Bo Cai
标识
DOI:10.1109/msr59073.2023.00065
摘要

Code smells slow down software system development and makes them harder to maintain. Existing research aims to develop automatic detection algorithms to reduce the labor and time costs within the detection process. Deep learning techniques have recently been demonstrated to enhance the performance of recognizing code smells even more than metric-based heuristic detection algorithms. As large-scale pre-trained models for Programming Languages (PL), such as CodeT5, have lately achieved the top results in a variety of downstream tasks, some researchers begin to explore the use of pre-trained models to extract the contextual semantics of code to detect code smells. However, little research has employed contextual code semantics relationship between code snippets obtained by pre-trained models to identify code smells. In this paper, we investigate the use of the pre-trained model CodeT5 to extract semantic relationships between code snippets to detect feature envy, which is one of the most common code smells. In addition, to investigate the performance of these semantic relationships extracted by pre-trained models of different architectures on detecting feature envy, we compare CodeT5 with two other pre-trained models CodeBERT and CodeGPT. We have performed our experimental evaluation on ten open-source projects, our approach improves F-measure by 29.32% on feature envy detection and 16.57% on moving destination recommendation. Using semantic relations extracted by several pre-trained models to detect feature envy outperforms the state-of-the-art. This shows that using this semantic relation to detect feature envy is promising. To enable future research on feature envy detection, we have made all the code and datasets utilized in this article open source.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lily发布了新的文献求助10
刚刚
jack1511发布了新的文献求助10
刚刚
2024011023发布了新的文献求助10
刚刚
KFjiatang完成签到,获得积分10
刚刚
mfy0068完成签到,获得积分10
刚刚
墨西哥猪肉卷完成签到,获得积分10
刚刚
旷意发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
含糊的玲发布了新的文献求助10
刚刚
斯文败类应助小管采纳,获得10
1秒前
默许冰心完成签到,获得积分10
1秒前
2秒前
冬青ouo完成签到,获得积分10
2秒前
3秒前
上官若男应助夕荀采纳,获得10
3秒前
细腻砖头应助邹益春采纳,获得10
3秒前
3秒前
WD发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
Li应助hsa_ID采纳,获得10
5秒前
微信研友发布了新的文献求助10
5秒前
阿乔发布了新的文献求助10
6秒前
嘿嘿嘿发布了新的文献求助10
6秒前
完美星落完成签到,获得积分10
6秒前
wuhao1完成签到,获得积分20
6秒前
liaoyu发布了新的文献求助10
6秒前
香蕉觅云应助XIAONIE25采纳,获得10
7秒前
guojingjing发布了新的文献求助10
7秒前
lilei发布了新的文献求助10
7秒前
达奚多思完成签到,获得积分10
7秒前
7秒前
纯真忆安发布了新的文献求助10
7秒前
7秒前
RRRRR1完成签到,获得积分20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285