亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pre-trained Model Based Feature Envy Detection

计算机科学 代码气味 特征(语言学) 编码(集合论) 语义学(计算机科学) 人工智能 启发式 公制(单位) 机器学习 源代码 自然语言处理 软件 情报检索 软件开发 软件质量 程序设计语言 工程类 语言学 哲学 运营管理 集合(抽象数据类型)
作者
Wenhao Ma,Yaoxiang Yu,Xiaoming Ruan,Bo Cai
标识
DOI:10.1109/msr59073.2023.00065
摘要

Code smells slow down software system development and makes them harder to maintain. Existing research aims to develop automatic detection algorithms to reduce the labor and time costs within the detection process. Deep learning techniques have recently been demonstrated to enhance the performance of recognizing code smells even more than metric-based heuristic detection algorithms. As large-scale pre-trained models for Programming Languages (PL), such as CodeT5, have lately achieved the top results in a variety of downstream tasks, some researchers begin to explore the use of pre-trained models to extract the contextual semantics of code to detect code smells. However, little research has employed contextual code semantics relationship between code snippets obtained by pre-trained models to identify code smells. In this paper, we investigate the use of the pre-trained model CodeT5 to extract semantic relationships between code snippets to detect feature envy, which is one of the most common code smells. In addition, to investigate the performance of these semantic relationships extracted by pre-trained models of different architectures on detecting feature envy, we compare CodeT5 with two other pre-trained models CodeBERT and CodeGPT. We have performed our experimental evaluation on ten open-source projects, our approach improves F-measure by 29.32% on feature envy detection and 16.57% on moving destination recommendation. Using semantic relations extracted by several pre-trained models to detect feature envy outperforms the state-of-the-art. This shows that using this semantic relation to detect feature envy is promising. To enable future research on feature envy detection, we have made all the code and datasets utilized in this article open source.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还没睡醒发布了新的文献求助10
1秒前
7秒前
还没睡醒完成签到,获得积分10
9秒前
太阳想玉米完成签到 ,获得积分10
33秒前
科研通AI2S应助yeah采纳,获得10
34秒前
57秒前
1分钟前
Jasper应助Sym采纳,获得10
1分钟前
yeah完成签到,获得积分10
1分钟前
Rn完成签到 ,获得积分10
1分钟前
2分钟前
追寻的寻真完成签到,获得积分10
2分钟前
2分钟前
小猪啵比完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
香蕉觅云应助喝粥阿旺采纳,获得10
2分钟前
2分钟前
2分钟前
迷人尔蓝完成签到,获得积分10
2分钟前
2分钟前
喝粥阿旺发布了新的文献求助10
2分钟前
Sym发布了新的文献求助10
2分钟前
迷人尔蓝发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
Ava应助史昊昊采纳,获得30
3分钟前
Darcy应助科研通管家采纳,获得50
3分钟前
3分钟前
3分钟前
史昊昊完成签到,获得积分10
3分钟前
史昊昊发布了新的文献求助30
3分钟前
3分钟前
菠萝星猫完成签到,获得积分10
3分钟前
3分钟前
顾矜应助喝粥阿旺采纳,获得10
3分钟前
小二郎应助勤恳小李采纳,获得10
3分钟前
mol完成签到,获得积分10
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229674
求助须知:如何正确求助?哪些是违规求助? 2877215
关于积分的说明 8198526
捐赠科研通 2544692
什么是DOI,文献DOI怎么找? 1374549
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774