已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pre-trained Model Based Feature Envy Detection

计算机科学 代码气味 特征(语言学) 编码(集合论) 语义学(计算机科学) 人工智能 启发式 公制(单位) 机器学习 源代码 自然语言处理 软件 情报检索 软件开发 软件质量 程序设计语言 工程类 哲学 集合(抽象数据类型) 语言学 运营管理
作者
Wenhao Ma,Yaoxiang Yu,Xiaoming Ruan,Bo Cai
标识
DOI:10.1109/msr59073.2023.00065
摘要

Code smells slow down software system development and makes them harder to maintain. Existing research aims to develop automatic detection algorithms to reduce the labor and time costs within the detection process. Deep learning techniques have recently been demonstrated to enhance the performance of recognizing code smells even more than metric-based heuristic detection algorithms. As large-scale pre-trained models for Programming Languages (PL), such as CodeT5, have lately achieved the top results in a variety of downstream tasks, some researchers begin to explore the use of pre-trained models to extract the contextual semantics of code to detect code smells. However, little research has employed contextual code semantics relationship between code snippets obtained by pre-trained models to identify code smells. In this paper, we investigate the use of the pre-trained model CodeT5 to extract semantic relationships between code snippets to detect feature envy, which is one of the most common code smells. In addition, to investigate the performance of these semantic relationships extracted by pre-trained models of different architectures on detecting feature envy, we compare CodeT5 with two other pre-trained models CodeBERT and CodeGPT. We have performed our experimental evaluation on ten open-source projects, our approach improves F-measure by 29.32% on feature envy detection and 16.57% on moving destination recommendation. Using semantic relations extracted by several pre-trained models to detect feature envy outperforms the state-of-the-art. This shows that using this semantic relation to detect feature envy is promising. To enable future research on feature envy detection, we have made all the code and datasets utilized in this article open source.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黎继华完成签到 ,获得积分10
2秒前
4秒前
幽默刀儿匠完成签到,获得积分10
5秒前
还减肥呢完成签到 ,获得积分10
6秒前
6秒前
7秒前
如意小海豚完成签到 ,获得积分10
8秒前
8秒前
hmf1995完成签到 ,获得积分10
8秒前
9秒前
10秒前
hmf1995关注了科研通微信公众号
12秒前
潘少东发布了新的文献求助10
13秒前
zzm完成签到,获得积分10
17秒前
情怀应助汤泡泡采纳,获得10
17秒前
jjl完成签到 ,获得积分10
19秒前
19秒前
wd完成签到,获得积分10
21秒前
明理囧完成签到 ,获得积分10
21秒前
kingwill应助ytunnut采纳,获得30
21秒前
21秒前
111111111发布了新的文献求助10
22秒前
23秒前
24秒前
27秒前
28秒前
28秒前
JamesPei应助刻苦浩然采纳,获得10
30秒前
竹外桃花发布了新的文献求助20
30秒前
冷傲曼冬发布了新的文献求助10
31秒前
一亿元发布了新的文献求助10
32秒前
汤泡泡发布了新的文献求助10
32秒前
大力完成签到,获得积分10
35秒前
一往无前发布了新的文献求助10
35秒前
小羊完成签到 ,获得积分10
36秒前
36秒前
研友_VZG7GZ应助蒙豆儿采纳,获得10
36秒前
华仔应助冰激凌采纳,获得10
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595384
求助须知:如何正确求助?哪些是违规求助? 4680655
关于积分的说明 14816787
捐赠科研通 4649674
什么是DOI,文献DOI怎么找? 2535410
邀请新用户注册赠送积分活动 1503332
关于科研通互助平台的介绍 1469581