亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pre-trained Model Based Feature Envy Detection

计算机科学 代码气味 特征(语言学) 编码(集合论) 语义学(计算机科学) 人工智能 启发式 公制(单位) 机器学习 源代码 自然语言处理 软件 情报检索 软件开发 软件质量 程序设计语言 工程类 哲学 集合(抽象数据类型) 语言学 运营管理
作者
Wenhao Ma,Yaoxiang Yu,Xiaoming Ruan,Bo Cai
标识
DOI:10.1109/msr59073.2023.00065
摘要

Code smells slow down software system development and makes them harder to maintain. Existing research aims to develop automatic detection algorithms to reduce the labor and time costs within the detection process. Deep learning techniques have recently been demonstrated to enhance the performance of recognizing code smells even more than metric-based heuristic detection algorithms. As large-scale pre-trained models for Programming Languages (PL), such as CodeT5, have lately achieved the top results in a variety of downstream tasks, some researchers begin to explore the use of pre-trained models to extract the contextual semantics of code to detect code smells. However, little research has employed contextual code semantics relationship between code snippets obtained by pre-trained models to identify code smells. In this paper, we investigate the use of the pre-trained model CodeT5 to extract semantic relationships between code snippets to detect feature envy, which is one of the most common code smells. In addition, to investigate the performance of these semantic relationships extracted by pre-trained models of different architectures on detecting feature envy, we compare CodeT5 with two other pre-trained models CodeBERT and CodeGPT. We have performed our experimental evaluation on ten open-source projects, our approach improves F-measure by 29.32% on feature envy detection and 16.57% on moving destination recommendation. Using semantic relations extracted by several pre-trained models to detect feature envy outperforms the state-of-the-art. This shows that using this semantic relation to detect feature envy is promising. To enable future research on feature envy detection, we have made all the code and datasets utilized in this article open source.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
22秒前
科目三应助科研通管家采纳,获得10
23秒前
郭楠楠发布了新的文献求助30
27秒前
29秒前
Xyyy完成签到,获得积分10
31秒前
RED发布了新的文献求助10
34秒前
满天星发布了新的文献求助10
53秒前
1分钟前
郭楠楠发布了新的文献求助10
1分钟前
缨绒完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
满天星完成签到 ,获得积分10
2分钟前
zqr发布了新的文献求助10
2分钟前
Hello应助Raunio采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
abdo完成签到,获得积分10
2分钟前
kuoping完成签到,获得积分0
2分钟前
小蘑菇应助成太采纳,获得10
3分钟前
万能图书馆应助zxl采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
郭楠楠发布了新的文献求助10
3分钟前
3分钟前
清泉发布了新的文献求助10
3分钟前
3分钟前
成太发布了新的文献求助10
3分钟前
zxl发布了新的文献求助10
3分钟前
CodeCraft应助郭楠楠采纳,获得10
3分钟前
3分钟前
郭楠楠发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
付辛博boo完成签到,获得积分10
4分钟前
付辛博boo发布了新的文献求助30
4分钟前
李健应助SiboN采纳,获得10
4分钟前
万能图书馆应助Goal采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359