Pre-trained Model Based Feature Envy Detection

计算机科学 代码气味 特征(语言学) 编码(集合论) 语义学(计算机科学) 人工智能 启发式 公制(单位) 机器学习 源代码 自然语言处理 软件 情报检索 软件开发 软件质量 程序设计语言 工程类 哲学 集合(抽象数据类型) 语言学 运营管理
作者
Wenhao Ma,Yaoxiang Yu,Xiaoming Ruan,Bo Cai
标识
DOI:10.1109/msr59073.2023.00065
摘要

Code smells slow down software system development and makes them harder to maintain. Existing research aims to develop automatic detection algorithms to reduce the labor and time costs within the detection process. Deep learning techniques have recently been demonstrated to enhance the performance of recognizing code smells even more than metric-based heuristic detection algorithms. As large-scale pre-trained models for Programming Languages (PL), such as CodeT5, have lately achieved the top results in a variety of downstream tasks, some researchers begin to explore the use of pre-trained models to extract the contextual semantics of code to detect code smells. However, little research has employed contextual code semantics relationship between code snippets obtained by pre-trained models to identify code smells. In this paper, we investigate the use of the pre-trained model CodeT5 to extract semantic relationships between code snippets to detect feature envy, which is one of the most common code smells. In addition, to investigate the performance of these semantic relationships extracted by pre-trained models of different architectures on detecting feature envy, we compare CodeT5 with two other pre-trained models CodeBERT and CodeGPT. We have performed our experimental evaluation on ten open-source projects, our approach improves F-measure by 29.32% on feature envy detection and 16.57% on moving destination recommendation. Using semantic relations extracted by several pre-trained models to detect feature envy outperforms the state-of-the-art. This shows that using this semantic relation to detect feature envy is promising. To enable future research on feature envy detection, we have made all the code and datasets utilized in this article open source.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
柚子发布了新的文献求助10
刚刚
1秒前
12完成签到,获得积分10
2秒前
alan发布了新的文献求助10
2秒前
顾矜应助淡定的不言采纳,获得10
3秒前
4秒前
tepqi完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
毛於菟发布了新的文献求助10
6秒前
7秒前
容二遥关注了科研通微信公众号
7秒前
布噜噜噜噜完成签到,获得积分10
7秒前
7秒前
8秒前
大模型应助eblog采纳,获得10
8秒前
Ting发布了新的文献求助20
8秒前
9秒前
端庄龙猫发布了新的文献求助30
9秒前
juaner完成签到,获得积分10
9秒前
KAI发布了新的文献求助10
10秒前
天天快乐应助二维马采纳,获得10
10秒前
10秒前
徐sir发布了新的文献求助10
10秒前
牛战士完成签到,获得积分10
11秒前
FSS完成签到,获得积分20
11秒前
YANYAN发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
cc应助Kycg采纳,获得20
12秒前
alan完成签到,获得积分10
12秒前
12秒前
muchen发布了新的文献求助10
13秒前
14秒前
JJ发布了新的文献求助10
15秒前
15秒前
小兵发布了新的文献求助10
15秒前
16秒前
lsl599应助guojingjing采纳,获得10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049