Pre-trained Model Based Feature Envy Detection

计算机科学 代码气味 特征(语言学) 编码(集合论) 语义学(计算机科学) 人工智能 启发式 公制(单位) 机器学习 源代码 自然语言处理 软件 情报检索 软件开发 软件质量 程序设计语言 工程类 哲学 集合(抽象数据类型) 语言学 运营管理
作者
Wenhao Ma,Yaoxiang Yu,Xiaoming Ruan,Bo Cai
标识
DOI:10.1109/msr59073.2023.00065
摘要

Code smells slow down software system development and makes them harder to maintain. Existing research aims to develop automatic detection algorithms to reduce the labor and time costs within the detection process. Deep learning techniques have recently been demonstrated to enhance the performance of recognizing code smells even more than metric-based heuristic detection algorithms. As large-scale pre-trained models for Programming Languages (PL), such as CodeT5, have lately achieved the top results in a variety of downstream tasks, some researchers begin to explore the use of pre-trained models to extract the contextual semantics of code to detect code smells. However, little research has employed contextual code semantics relationship between code snippets obtained by pre-trained models to identify code smells. In this paper, we investigate the use of the pre-trained model CodeT5 to extract semantic relationships between code snippets to detect feature envy, which is one of the most common code smells. In addition, to investigate the performance of these semantic relationships extracted by pre-trained models of different architectures on detecting feature envy, we compare CodeT5 with two other pre-trained models CodeBERT and CodeGPT. We have performed our experimental evaluation on ten open-source projects, our approach improves F-measure by 29.32% on feature envy detection and 16.57% on moving destination recommendation. Using semantic relations extracted by several pre-trained models to detect feature envy outperforms the state-of-the-art. This shows that using this semantic relation to detect feature envy is promising. To enable future research on feature envy detection, we have made all the code and datasets utilized in this article open source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李盛男发布了新的文献求助10
刚刚
刚刚
ZZQ完成签到 ,获得积分10
刚刚
2秒前
2秒前
霍小美完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI2S应助羊水彤采纳,获得10
3秒前
Owen应助一一一一采纳,获得10
3秒前
3秒前
4秒前
5秒前
爱听歌的青筠完成签到,获得积分10
5秒前
dnn发布了新的文献求助10
5秒前
l895365038发布了新的文献求助10
6秒前
6秒前
王雄完成签到,获得积分20
7秒前
OCT发布了新的文献求助10
7秒前
8秒前
8秒前
王肖发布了新的文献求助10
8秒前
9秒前
烟花应助terryok采纳,获得30
10秒前
吱吱吱发布了新的文献求助10
10秒前
13秒前
cc发布了新的文献求助10
13秒前
14秒前
xie完成签到,获得积分10
15秒前
dnn完成签到,获得积分20
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
馆长举报刘明慧求助涉嫌违规
16秒前
一一一一完成签到,获得积分20
16秒前
直率的听露完成签到 ,获得积分10
16秒前
小熊童话书完成签到,获得积分10
16秒前
虚心的嫣然完成签到 ,获得积分10
17秒前
离心力完成签到,获得积分10
17秒前
西瓜珺发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4907817
求助须知:如何正确求助?哪些是违规求助? 4184682
关于积分的说明 12995045
捐赠科研通 3951176
什么是DOI,文献DOI怎么找? 2166855
邀请新用户注册赠送积分活动 1185434
关于科研通互助平台的介绍 1091895