MTLFuseNet: A novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning

判别式 计算机科学 人工智能 自编码 模式识别(心理学) 脑电图 特征学习 卷积神经网络 深度学习 特征(语言学) 语音识别 机器学习 心理学 语言学 精神科 哲学
作者
Rui Li,Chao Ren,Yiqing Ge,Qiqi Zhao,Yikun Yang,Yuhan Shi,Xiaowei Zhang,Bin Hu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:276: 110756-110756 被引量:33
标识
DOI:10.1016/j.knosys.2023.110756
摘要

How to extract discriminative latent feature representations from electroencephalography (EEG) signals and build a generalized model is a topic in EEG-based emotion recognition research. This study proposed a novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning, referred to as MTLFuseNet. MTLFuseNet learned spatio-temporal latent features of EEG in an unsupervised manner by a variational autoencoder (VAE) and learned the spatio-spectral features of EEG in a supervised manner by a graph convolutional network (GCN) and gated recurrent unit (GRU) network. Afterward, the two latent features were fused to form more complementary and discriminative spatio-temporal–spectral fusion features for EEG signal representation. In addition, MTLFuseNet was constructed based on multi-task learning. The focal loss was introduced to solve the problem of unbalanced sample classes in an emotional dataset, and the triplet-center loss was introduced to make the fused latent feature vectors more discriminative. Finally, a subject-independent leave-one-subject-out cross-validation strategy was used to validate extensively on two public datasets, DEAP and DREAMER. On the DEAP dataset, the average accuracies of valence and arousal are 71.33% and 73.28%, respectively. On the DREAMER dataset, the average accuracies of valence and arousal are 80.43% and 83.33%, respectively. The experimental results show that the proposed MTLFuseNet model achieves excellent recognition performance, outperforming the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
CipherSage应助CartGo采纳,获得10
2秒前
3秒前
3秒前
msl2023完成签到,获得积分10
3秒前
Xieyusen发布了新的文献求助10
3秒前
LHF发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
蓝色的帐篷完成签到 ,获得积分10
5秒前
5秒前
Owen应助郭小宝采纳,获得10
6秒前
寒天发布了新的文献求助10
6秒前
6秒前
6秒前
哭泣半双发布了新的文献求助30
7秒前
英俊的咖啡豆完成签到 ,获得积分10
8秒前
8秒前
9秒前
Zzz完成签到,获得积分10
9秒前
irfanshan发布了新的文献求助10
9秒前
阳光下的养乐多完成签到,获得积分10
10秒前
杨仔发布了新的文献求助10
11秒前
思维隋发布了新的文献求助10
11秒前
12秒前
12秒前
HHH发布了新的文献求助10
12秒前
金金发布了新的文献求助10
13秒前
13秒前
longlu完成签到,获得积分10
14秒前
黑炭球完成签到,获得积分10
14秒前
科目三应助笨笨含羞草采纳,获得10
15秒前
15秒前
CartGo发布了新的文献求助10
16秒前
16秒前
杜景婷完成签到 ,获得积分10
16秒前
16秒前
卓梨发布了新的文献求助10
17秒前
内向寒云发布了新的文献求助10
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193