MTLFuseNet: A novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning

判别式 计算机科学 人工智能 自编码 模式识别(心理学) 脑电图 特征学习 卷积神经网络 深度学习 特征(语言学) 语音识别 机器学习 心理学 语言学 哲学 精神科
作者
Rui Li,Chao Ren,Yiqing Ge,Qiqi Zhao,Yikun Yang,Yuhan Shi,Xiaowei Zhang,Bin Hu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:276: 110756-110756 被引量:33
标识
DOI:10.1016/j.knosys.2023.110756
摘要

How to extract discriminative latent feature representations from electroencephalography (EEG) signals and build a generalized model is a topic in EEG-based emotion recognition research. This study proposed a novel emotion recognition model based on deep latent feature fusion of EEG signals and multi-task learning, referred to as MTLFuseNet. MTLFuseNet learned spatio-temporal latent features of EEG in an unsupervised manner by a variational autoencoder (VAE) and learned the spatio-spectral features of EEG in a supervised manner by a graph convolutional network (GCN) and gated recurrent unit (GRU) network. Afterward, the two latent features were fused to form more complementary and discriminative spatio-temporal–spectral fusion features for EEG signal representation. In addition, MTLFuseNet was constructed based on multi-task learning. The focal loss was introduced to solve the problem of unbalanced sample classes in an emotional dataset, and the triplet-center loss was introduced to make the fused latent feature vectors more discriminative. Finally, a subject-independent leave-one-subject-out cross-validation strategy was used to validate extensively on two public datasets, DEAP and DREAMER. On the DEAP dataset, the average accuracies of valence and arousal are 71.33% and 73.28%, respectively. On the DREAMER dataset, the average accuracies of valence and arousal are 80.43% and 83.33%, respectively. The experimental results show that the proposed MTLFuseNet model achieves excellent recognition performance, outperforming the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的奎发布了新的文献求助10
1秒前
澄桦发布了新的文献求助10
3秒前
4秒前
医学完成签到,获得积分10
4秒前
奥利奥爱好者完成签到,获得积分10
7秒前
不说再见完成签到,获得积分10
7秒前
9秒前
10秒前
10秒前
啊吼吼发布了新的文献求助10
10秒前
斯文的秋蝶关注了科研通微信公众号
10秒前
longer发布了新的文献求助10
11秒前
阿坝完成签到,获得积分20
11秒前
11秒前
斯文败类应助居居采纳,获得10
12秒前
Criminology34举报科研助理求助涉嫌违规
13秒前
13秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
852应助阿坝采纳,获得10
15秒前
玖玖完成签到,获得积分10
17秒前
111111发布了新的文献求助10
17秒前
小菜狗发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
天天快乐应助123采纳,获得10
19秒前
20秒前
orixero应助玖玖采纳,获得10
20秒前
无情的绮彤完成签到,获得积分10
20秒前
20秒前
仁爱听露发布了新的文献求助10
22秒前
cc完成签到 ,获得积分10
23秒前
24秒前
居居发布了新的文献求助10
24秒前
瞅一瞅给瞅一瞅的求助进行了留言
25秒前
25秒前
cyx发布了新的文献求助10
25秒前
林天翼发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323