化学
抗坏血酸
蚀刻(微加工)
过氧化氢
纳米棒
抗氧化剂
纳米技术
材料科学
有机化学
食品科学
图层(电子)
作者
Hongyan Xi,Ziqian Shi,Pengfei Wu,Niu Pan,Feng Xu,Yukun Gao,Penggang Yin
标识
DOI:10.1016/j.saa.2023.123082
摘要
Antioxidants play an important role in life health and food safety. Herein, an inverse-etching platform based on gold nanorods (AuNRs) and gold nanostars (AuNSs) for high-throughput discrimination of antioxidants was constructed. Under the action of hydrogen peroxide (H2O2) and horseradish peroxidase (HRP), 3,3',5,5'-tetramethylbenzidine (TMB) would be oxidized to TMB+ or TMB2+. HRP reacts with H2O2 to release oxygen free radicals, which then react with TMB. Au nanomaterials can react with TMB2+, at the same time, Au was oxidized into Au (I), leading to the etching of the shape. Antioxidants, with good reduction ability, would prevent the further oxidation of TMB+ to TMB2+. So the presence of antioxidants will prevent further oxidation while avoiding the etching of Au in the catalytic oxidation process, thereby achieved inverse etching. Distinctive surface enhanced Raman scattering (SERS) fingerprint of five antioxidants were obtained based on the differential ability to scavenge free radicals. Five antioxidants, including ascorbic acid (AA), melatonin (Mel), glutathione (GSH), tea polyphenols (TPP), and uric acid (UA) were successfully distinguished by using linear discriminant analysis (LDA), heat map analysis and hierarchical cluster analysis (HCA). The study exhibits an effective inverse-etching based SERS sensor array for the response of antioxidants, which has great reference value in the field of human disease and food detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI