Automatic seizure detection and classification using super-resolution superlet transform and deep neural network -A preprocessing-less method

脑电图 计算机科学 人工智能 癫痫发作 模式识别(心理学) 卷积神经网络 癫痫 预处理器 深度学习 人工神经网络 语音识别 心理学 神经科学
作者
Prashant Mani Tripathi,Ashish Kumar,Manjeet Kumar,Rama Komaragiri
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107680-107680 被引量:11
标识
DOI:10.1016/j.cmpb.2023.107680
摘要

Epilepsy, characterized by recurrent seizures, is a chronic brain disease that affects approximately 50 million. Recurrent seizures characterize it. A seizure, a burst of uncontrolled electrical activity between brain cells, results in temporary changes in behavior, level of consciousness, and involuntary movements. An accurate prediction of seizures can improve the standard of living in epileptic subjects. The increasing capabilities of machine learning and computer-assisted devices can detect seizures accurately with minimal human intervention. This paper proposes a method to detect seizure and non-seizure events using superlet transform (SLT) and a deep convolution neural network: VGG-19. The electroencephalogram (EEG) dataset from the University of Bonn is used to validate the efficacy of the proposed method. SLT, a high-resolution time-frequency technique, converts EEG records into two-dimensional (2-D) images. SLT provides a high-resolution time-frequency representation reflecting the oscillation bursts in an EEG record. The time-frequency representations as 2-D images are fed to a pre-trained convolutional neural network: VGG-19. The last layers of VGG-19 are replaced with new layers to accommodate the different classification problems. The proposed method achieved an accuracy of 100% for all seven seizure and non-seizure detection cases considered in this work. In the case of three and five-class classification problems, the proposed method has better accuracy than other existing methods. The CHB-MIT scalp EEG database is also used to assess the effectiveness of the proposed method, which achieved a classification accuracy of 94.3% in distinguishing between seizure and non-seizure events. The results obtained using the proposed methodology show the efficacy of the proposed method in accurately detecting seizures and other brain activity with the least pre-processing and human involvement. The proposed method can assist medical practitioners by saving their effort and time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧谷波完成签到 ,获得积分10
刚刚
刚刚
77完成签到,获得积分10
1秒前
科研废柴完成签到,获得积分10
2秒前
光崽是谁完成签到,获得积分10
2秒前
Bin完成签到,获得积分10
2秒前
lym完成签到,获得积分10
2秒前
善良的橄榄色芭蕉鲨鱼完成签到,获得积分10
3秒前
kellen完成签到,获得积分10
3秒前
77发布了新的文献求助10
4秒前
echo完成签到,获得积分10
4秒前
nieinei完成签到 ,获得积分10
4秒前
科研民工花儿完成签到,获得积分10
4秒前
一一完成签到,获得积分10
5秒前
陈陈发布了新的文献求助10
5秒前
西松屋地铁完成签到 ,获得积分10
6秒前
Lc完成签到,获得积分10
6秒前
AMANI_NAKUPENDA完成签到,获得积分10
7秒前
米粥饭完成签到,获得积分10
7秒前
结实的丹雪完成签到,获得积分10
7秒前
关美人儿完成签到,获得积分10
8秒前
RichieXU完成签到,获得积分10
8秒前
8秒前
wenwen完成签到 ,获得积分10
8秒前
RowanLuo完成签到,获得积分10
9秒前
健壮的鸽子完成签到,获得积分10
11秒前
高高的起眸完成签到,获得积分10
11秒前
明天又是美好的一天完成签到 ,获得积分10
11秒前
越过山丘完成签到,获得积分20
11秒前
整齐醉冬完成签到,获得积分10
11秒前
笨笨念文完成签到 ,获得积分10
11秒前
无情的幻嫣完成签到,获得积分10
11秒前
13秒前
14秒前
大白牛完成签到,获得积分10
14秒前
Nuyoah完成签到 ,获得积分10
14秒前
eyyan完成签到,获得积分10
15秒前
Rondab应助温润如玉坤采纳,获得10
15秒前
锺zhishui完成签到,获得积分10
16秒前
晴天完成签到 ,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027