Automatic seizure detection and classification using super-resolution superlet transform and deep neural network -A preprocessing-less method

脑电图 计算机科学 人工智能 癫痫发作 模式识别(心理学) 卷积神经网络 癫痫 预处理器 深度学习 人工神经网络 语音识别 心理学 神经科学
作者
Prashant Mani Tripathi,Ashish Kumar,Manjeet Kumar,Rama Komaragiri
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107680-107680 被引量:11
标识
DOI:10.1016/j.cmpb.2023.107680
摘要

Epilepsy, characterized by recurrent seizures, is a chronic brain disease that affects approximately 50 million. Recurrent seizures characterize it. A seizure, a burst of uncontrolled electrical activity between brain cells, results in temporary changes in behavior, level of consciousness, and involuntary movements. An accurate prediction of seizures can improve the standard of living in epileptic subjects. The increasing capabilities of machine learning and computer-assisted devices can detect seizures accurately with minimal human intervention. This paper proposes a method to detect seizure and non-seizure events using superlet transform (SLT) and a deep convolution neural network: VGG-19. The electroencephalogram (EEG) dataset from the University of Bonn is used to validate the efficacy of the proposed method. SLT, a high-resolution time-frequency technique, converts EEG records into two-dimensional (2-D) images. SLT provides a high-resolution time-frequency representation reflecting the oscillation bursts in an EEG record. The time-frequency representations as 2-D images are fed to a pre-trained convolutional neural network: VGG-19. The last layers of VGG-19 are replaced with new layers to accommodate the different classification problems. The proposed method achieved an accuracy of 100% for all seven seizure and non-seizure detection cases considered in this work. In the case of three and five-class classification problems, the proposed method has better accuracy than other existing methods. The CHB-MIT scalp EEG database is also used to assess the effectiveness of the proposed method, which achieved a classification accuracy of 94.3% in distinguishing between seizure and non-seizure events. The results obtained using the proposed methodology show the efficacy of the proposed method in accurately detecting seizures and other brain activity with the least pre-processing and human involvement. The proposed method can assist medical practitioners by saving their effort and time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
泡芙完成签到,获得积分10
1秒前
奇怪的柒发布了新的文献求助10
1秒前
1秒前
1秒前
123发布了新的文献求助10
2秒前
2秒前
2秒前
lulusheng发布了新的文献求助10
2秒前
3秒前
元宝团子发布了新的文献求助10
3秒前
3秒前
开朗梦曼完成签到,获得积分10
3秒前
4秒前
5秒前
白小橘完成签到 ,获得积分10
5秒前
5秒前
烂漫的访天完成签到,获得积分10
5秒前
lys发布了新的文献求助10
5秒前
LZK发布了新的文献求助10
5秒前
希望天下0贩的0应助carcar采纳,获得10
6秒前
BurgerKing发布了新的文献求助10
6秒前
韭菜盒子发布了新的文献求助10
6秒前
酷波er应助听闻采纳,获得10
6秒前
赫连人杰发布了新的文献求助200
6秒前
不想干活应助可乐不加冰采纳,获得10
6秒前
林沐发布了新的文献求助10
6秒前
舒心白山完成签到 ,获得积分10
7秒前
殷晓阳发布了新的文献求助10
7秒前
小余完成签到,获得积分20
7秒前
跳跃仙人掌发布了新的文献求助100
7秒前
Starset应助欣喜紫真采纳,获得20
7秒前
evergarden完成签到,获得积分10
8秒前
所所应助帅气的冬菱采纳,获得10
9秒前
小二郎应助火星上的中恶采纳,获得80
9秒前
研友_VZG7GZ应助yehuaiyu采纳,获得10
9秒前
9秒前
9秒前
宠仙发布了新的文献求助10
10秒前
yyyfff应助ke2w1n12138采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599540
求助须知:如何正确求助?哪些是违规求助? 4010119
关于积分的说明 12414946
捐赠科研通 3689740
什么是DOI,文献DOI怎么找? 2034025
邀请新用户注册赠送积分活动 1067273
科研通“疑难数据库(出版商)”最低求助积分说明 952284