Metal-organic frameworks as superior adsorbents for pesticide removal from water: The cutting-edge in characterization, tailoring, and application potentials

吸附 化学 堆积 可重用性 杀虫剂 金属有机骨架 纳米技术 化学工程 有机化学 计算机科学 材料科学 生物 工程类 软件 农学 程序设计语言
作者
Jie Li,Quankun Lv,Lulu Bi,Fei Fang,Jifei Hou,Guanglan Di,Juan Wei,Xiangwei Wu,Xuede Li
出处
期刊:Coordination Chemistry Reviews [Elsevier BV]
卷期号:493: 215303-215303 被引量:35
标识
DOI:10.1016/j.ccr.2023.215303
摘要

Pesticides are top-priority contaminants, and the highly efficient removal of pesticides from wastewater is of vital importance due to their significant risk to the ecological environment and human health. Metal-organic frameworks (MOFs) have a large specific surface area, adjustable aperture size, easy modification and facile production, which have been demonstrated to be a superior platform for pesticide adsorption. This review highlights the advances in reported MOF-based materials as robust candidates for efficient pesticide capture from water. The adsorption performance and related mechanisms of MOF-based adsorbents for different types of pesticides were evaluated and compared with those of traditional adsorbents. Macroscopic batch techniques, microscopic spectral analysis and theoretical calculations are efficient for analyzing the pesticide adsorption behaviors and mechanisms by MOF. Complex host–guest interactions including coordination, electrostatic interactions, hydrogen bonding, π-π interactions/stacking, acid-base interactions and hydrophobic interactions participate in the pesticide adsorption process. Strategies including enlarging pores, introducing functionalities, charging surfaces and hydrophobicity can efficiently promote the pesticide adsorption efficiency. With continuous research, more MOF-based adsorbents with low cost, large-scale production, outstanding stability, easy separation and excellent reusability have been developed, which promotes the practical application of MOF-based materials. Finally, possible research challenges and perspectives in this field are proposed to stimulate more possibilities for future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动映波发布了新的文献求助10
1秒前
asdfqwer应助xhzhao86采纳,获得10
3秒前
7秒前
笨笨远望应助LYY采纳,获得50
8秒前
科研小趴菜完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
刻苦的小虾米完成签到,获得积分10
10秒前
11秒前
Ava应助未济终焉采纳,获得30
12秒前
Ava应助生动映波采纳,获得10
12秒前
fire完成签到 ,获得积分10
12秒前
14秒前
木野狐发布了新的文献求助10
14秒前
老演员发布了新的文献求助10
15秒前
16秒前
xu发布了新的文献求助10
16秒前
18秒前
一只渣狗发布了新的文献求助10
19秒前
happiness完成签到 ,获得积分10
20秒前
20秒前
背后归尘完成签到,获得积分10
20秒前
Jasper应助zx采纳,获得10
21秒前
喜悦灵凡发布了新的文献求助30
21秒前
25秒前
25秒前
SYLH应助xu采纳,获得10
25秒前
25秒前
华仔应助木野狐采纳,获得10
27秒前
文献求助111完成签到,获得积分10
27秒前
菜鸟队长发布了新的文献求助10
28秒前
29秒前
30秒前
CodeCraft应助wxq采纳,获得10
32秒前
33秒前
35秒前
菜鸟队长完成签到,获得积分10
37秒前
Jamc1n发布了新的文献求助10
39秒前
39秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734464
求助须知:如何正确求助?哪些是违规求助? 3278459
关于积分的说明 10009515
捐赠科研通 2995045
什么是DOI,文献DOI怎么找? 1643172
邀请新用户注册赠送积分活动 780986
科研通“疑难数据库(出版商)”最低求助积分说明 749183