Dissolved organic matter evolution and straw decomposition rate characterization under different water and fertilizer conditions based on three-dimensional fluorescence spectrum and deep learning

稻草 肥料 环境科学 表征(材料科学) 溶解有机碳 分解 有机质 荧光 深水 农学 化学 环境工程 土壤科学 环境化学 生态学 材料科学 地质学 纳米技术 海洋学 物理 无机化学 生物 量子力学
作者
Guang Yang,Hongwei Pan,Hongjun Lei,Wenbin Tong,Lili Shi,Huiru Chen
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:344: 118537-118537 被引量:30
标识
DOI:10.1016/j.jenvman.2023.118537
摘要

Straw returning is a sustainable way to utilize agricultural solid waste resources. However, incomplete decomposition of straw will cause harm to crop growth and soil quality. Currently, there is a lack of technology to timely monitor the rate of straw decomposition. Dissolved organic matter (DOM) is the most active organic matter in soil and straw is mainly immersed in the soil in the form of DOM. In order to formulate reasonable straw returning management measures , a timely monitoring method of straw decomposition rate was developed in the study. Three water treatment (60%–65%, 70%–75% and 80%–85% maximum field capacity) and two fertilizer (organic fertilizer and chemical fertilizer) were set up in the management of straw returning to the field. Litterbag method was used to monitor the weight loss rate of straw decomposition under different water and fertilizer conditions in strawberry growth stage. The changes of DOM components were determined by three-dimensional fluorescence spectroscopy (3D-EEM). From the faster decomposition period to the slower decomposition period, the main components of DOM changed from protein-like components to humus-like components. At the end of the experiment, the relative content of humus-like components under the treatment of organic fertilizer and moderate water was the highest. Convolutional neural network (CNN) combined with 3D-EEM was used to identify the decomposition speed of straw. The classification precision of neural network validation set and test are 85.7% and 81.2%, respectively. In order to predict the decomposition rate of straw under different water and fertilizer conditions, 3D-EEM data of DOM were used as the input of CNN, parallel factor analysis (PARAFAC) and fluorescence region integral (FRI), and dissolved organic carbon data were used as the input of dissolved organic carbon linear prediction. The prediction model based on CNN had the best effect (R2 = 0.987). The results show that this method can effectively identify the spectral characteristics and predict the decomposition rate of straw under different conditions of water and fertilizer, which is helpful to promote the efficient decomposition of straw.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang发布了新的文献求助10
刚刚
2秒前
2秒前
ppp完成签到,获得积分20
2秒前
阳光的成风完成签到,获得积分10
4秒前
常绝山完成签到 ,获得积分10
4秒前
水下月发布了新的文献求助10
4秒前
Creshiki发布了新的文献求助10
4秒前
zouhui发布了新的文献求助10
5秒前
ppp发布了新的文献求助10
5秒前
似乎一场梦完成签到,获得积分10
6秒前
王亲近发布了新的文献求助10
8秒前
8秒前
成就的咖啡完成签到 ,获得积分10
8秒前
8秒前
chao完成签到,获得积分10
9秒前
华仔应助王肖宁采纳,获得10
10秒前
浮游应助汕头凯奇采纳,获得10
10秒前
机智的雁荷完成签到 ,获得积分10
10秒前
cooper发布了新的文献求助10
11秒前
John发布了新的文献求助10
11秒前
leiyang49完成签到,获得积分10
14秒前
今后应助Creshiki采纳,获得10
16秒前
叮叮叮发布了新的文献求助10
16秒前
16秒前
ls完成签到,获得积分10
16秒前
19秒前
充电宝应助科研小渣渣采纳,获得10
20秒前
Owen应助婷婷的大宝剑采纳,获得10
24秒前
shhoing应助乆乆乆乆采纳,获得10
24秒前
25秒前
直率的砖头完成签到,获得积分10
25秒前
阳光问安完成签到 ,获得积分10
27秒前
28秒前
28秒前
大模型应助茶米采纳,获得10
29秒前
29秒前
cooper完成签到,获得积分20
30秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003