已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dissolved organic matter evolution and straw decomposition rate characterization under different water and fertilizer conditions based on three-dimensional fluorescence spectrum and deep learning

稻草 肥料 环境科学 表征(材料科学) 溶解有机碳 分解 有机质 荧光 深水 农学 化学 环境工程 土壤科学 环境化学 生态学 材料科学 地质学 纳米技术 海洋学 物理 无机化学 生物 量子力学
作者
Guang Yang,Hongwei Pan,Hongjun Lei,Wenbin Tong,Lili Shi,Huiru Chen
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:344: 118537-118537 被引量:30
标识
DOI:10.1016/j.jenvman.2023.118537
摘要

Straw returning is a sustainable way to utilize agricultural solid waste resources. However, incomplete decomposition of straw will cause harm to crop growth and soil quality. Currently, there is a lack of technology to timely monitor the rate of straw decomposition. Dissolved organic matter (DOM) is the most active organic matter in soil and straw is mainly immersed in the soil in the form of DOM. In order to formulate reasonable straw returning management measures , a timely monitoring method of straw decomposition rate was developed in the study. Three water treatment (60%–65%, 70%–75% and 80%–85% maximum field capacity) and two fertilizer (organic fertilizer and chemical fertilizer) were set up in the management of straw returning to the field. Litterbag method was used to monitor the weight loss rate of straw decomposition under different water and fertilizer conditions in strawberry growth stage. The changes of DOM components were determined by three-dimensional fluorescence spectroscopy (3D-EEM). From the faster decomposition period to the slower decomposition period, the main components of DOM changed from protein-like components to humus-like components. At the end of the experiment, the relative content of humus-like components under the treatment of organic fertilizer and moderate water was the highest. Convolutional neural network (CNN) combined with 3D-EEM was used to identify the decomposition speed of straw. The classification precision of neural network validation set and test are 85.7% and 81.2%, respectively. In order to predict the decomposition rate of straw under different water and fertilizer conditions, 3D-EEM data of DOM were used as the input of CNN, parallel factor analysis (PARAFAC) and fluorescence region integral (FRI), and dissolved organic carbon data were used as the input of dissolved organic carbon linear prediction. The prediction model based on CNN had the best effect (R2 = 0.987). The results show that this method can effectively identify the spectral characteristics and predict the decomposition rate of straw under different conditions of water and fertilizer, which is helpful to promote the efficient decomposition of straw.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
浮游应助瘦瘦问柳采纳,获得10
2秒前
2秒前
2秒前
星辰大海应助乐观的海采纳,获得30
2秒前
小二郎应助lin采纳,获得10
3秒前
庚午发布了新的文献求助10
3秒前
LLoud发布了新的文献求助10
4秒前
nangua发布了新的文献求助30
4秒前
5秒前
6秒前
6秒前
Dongbalal发布了新的文献求助10
6秒前
所所应助Sylas采纳,获得10
7秒前
7秒前
8秒前
丘比特应助落后的衬衫采纳,获得10
8秒前
西海岸的风完成签到 ,获得积分10
10秒前
10秒前
xiao发布了新的文献求助10
11秒前
wanci应助sun采纳,获得10
12秒前
13秒前
CipherSage应助酷炫的面包采纳,获得10
13秒前
li发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
15秒前
Hongmin发布了新的文献求助10
15秒前
秀丽手机发布了新的文献求助20
16秒前
李爱国应助留胡子的谷雪采纳,获得10
17秒前
into0s发布了新的文献求助200
17秒前
18秒前
星辰大海应助魔幻安南采纳,获得10
19秒前
Lee发布了新的文献求助10
19秒前
19秒前
19秒前
lin发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733