Dissolved organic matter evolution and straw decomposition rate characterization under different water and fertilizer conditions based on three-dimensional fluorescence spectrum and deep learning

稻草 肥料 环境科学 表征(材料科学) 溶解有机碳 分解 有机质 荧光 深水 农学 化学 环境工程 土壤科学 环境化学 生态学 材料科学 地质学 纳米技术 海洋学 物理 无机化学 生物 量子力学
作者
Guang Yang,Hongwei Pan,Hongjun Lei,Wenbin Tong,Lili Shi,Huiru Chen
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:344: 118537-118537 被引量:26
标识
DOI:10.1016/j.jenvman.2023.118537
摘要

Straw returning is a sustainable way to utilize agricultural solid waste resources. However, incomplete decomposition of straw will cause harm to crop growth and soil quality. Currently, there is a lack of technology to timely monitor the rate of straw decomposition. Dissolved organic matter (DOM) is the most active organic matter in soil and straw is mainly immersed in the soil in the form of DOM. In order to formulate reasonable straw returning management measures , a timely monitoring method of straw decomposition rate was developed in the study. Three water treatment (60%–65%, 70%–75% and 80%–85% maximum field capacity) and two fertilizer (organic fertilizer and chemical fertilizer) were set up in the management of straw returning to the field. Litterbag method was used to monitor the weight loss rate of straw decomposition under different water and fertilizer conditions in strawberry growth stage. The changes of DOM components were determined by three-dimensional fluorescence spectroscopy (3D-EEM). From the faster decomposition period to the slower decomposition period, the main components of DOM changed from protein-like components to humus-like components. At the end of the experiment, the relative content of humus-like components under the treatment of organic fertilizer and moderate water was the highest. Convolutional neural network (CNN) combined with 3D-EEM was used to identify the decomposition speed of straw. The classification precision of neural network validation set and test are 85.7% and 81.2%, respectively. In order to predict the decomposition rate of straw under different water and fertilizer conditions, 3D-EEM data of DOM were used as the input of CNN, parallel factor analysis (PARAFAC) and fluorescence region integral (FRI), and dissolved organic carbon data were used as the input of dissolved organic carbon linear prediction. The prediction model based on CNN had the best effect (R2 = 0.987). The results show that this method can effectively identify the spectral characteristics and predict the decomposition rate of straw under different conditions of water and fertilizer, which is helpful to promote the efficient decomposition of straw.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
黑眼圈发布了新的文献求助10
2秒前
初之发布了新的文献求助10
6秒前
6秒前
8秒前
噜啦噜啦发布了新的文献求助10
11秒前
彭于晏应助笨笨甜瓜采纳,获得10
12秒前
12秒前
Mathletics完成签到 ,获得积分10
12秒前
12秒前
13秒前
马夋完成签到,获得积分10
14秒前
15秒前
马夋发布了新的文献求助10
17秒前
隐形曼青应助shineshine采纳,获得10
17秒前
FBQZDJG2122完成签到,获得积分10
17秒前
orixero应助科研小白采纳,获得10
17秒前
大个应助熵增采纳,获得10
18秒前
18秒前
ding应助噜啦噜啦采纳,获得10
19秒前
上官若男应助吐司采纳,获得10
20秒前
琪玛苏发布了新的文献求助10
21秒前
puppynorio发布了新的文献求助50
22秒前
呼呼呼完成签到 ,获得积分10
22秒前
Zkxxxx应助马夋采纳,获得10
23秒前
sdd完成签到,获得积分10
24秒前
25秒前
25秒前
Ava应助Iwan采纳,获得10
28秒前
包子完成签到,获得积分10
28秒前
leolin完成签到,获得积分10
28秒前
ding应助幸福果汁采纳,获得10
28秒前
量子星尘发布了新的文献求助10
29秒前
善学以致用应助琪玛苏采纳,获得10
30秒前
。。。完成签到 ,获得积分20
30秒前
31秒前
笨笨甜瓜发布了新的文献求助10
31秒前
梦雨甘发布了新的文献求助10
31秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844