Dissolved organic matter evolution and straw decomposition rate characterization under different water and fertilizer conditions based on three-dimensional fluorescence spectrum and deep learning

稻草 肥料 环境科学 表征(材料科学) 溶解有机碳 分解 有机质 荧光 深水 农学 化学 环境工程 土壤科学 环境化学 生态学 材料科学 地质学 纳米技术 海洋学 物理 无机化学 生物 量子力学
作者
Guang Yang,Hongwei Pan,Hongjun Lei,Wenbin Tong,Lili Shi,Huiru Chen
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:344: 118537-118537 被引量:30
标识
DOI:10.1016/j.jenvman.2023.118537
摘要

Straw returning is a sustainable way to utilize agricultural solid waste resources. However, incomplete decomposition of straw will cause harm to crop growth and soil quality. Currently, there is a lack of technology to timely monitor the rate of straw decomposition. Dissolved organic matter (DOM) is the most active organic matter in soil and straw is mainly immersed in the soil in the form of DOM. In order to formulate reasonable straw returning management measures , a timely monitoring method of straw decomposition rate was developed in the study. Three water treatment (60%–65%, 70%–75% and 80%–85% maximum field capacity) and two fertilizer (organic fertilizer and chemical fertilizer) were set up in the management of straw returning to the field. Litterbag method was used to monitor the weight loss rate of straw decomposition under different water and fertilizer conditions in strawberry growth stage. The changes of DOM components were determined by three-dimensional fluorescence spectroscopy (3D-EEM). From the faster decomposition period to the slower decomposition period, the main components of DOM changed from protein-like components to humus-like components. At the end of the experiment, the relative content of humus-like components under the treatment of organic fertilizer and moderate water was the highest. Convolutional neural network (CNN) combined with 3D-EEM was used to identify the decomposition speed of straw. The classification precision of neural network validation set and test are 85.7% and 81.2%, respectively. In order to predict the decomposition rate of straw under different water and fertilizer conditions, 3D-EEM data of DOM were used as the input of CNN, parallel factor analysis (PARAFAC) and fluorescence region integral (FRI), and dissolved organic carbon data were used as the input of dissolved organic carbon linear prediction. The prediction model based on CNN had the best effect (R2 = 0.987). The results show that this method can effectively identify the spectral characteristics and predict the decomposition rate of straw under different conditions of water and fertilizer, which is helpful to promote the efficient decomposition of straw.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巅峰囚冰完成签到,获得积分10
刚刚
杨璇完成签到 ,获得积分10
刚刚
1秒前
一一发布了新的文献求助10
1秒前
七饭饭发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
Zhy完成签到,获得积分10
2秒前
3秒前
PHNWNU发布了新的文献求助10
3秒前
黄景滨发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
Wang发布了新的文献求助20
3秒前
lbc完成签到,获得积分10
3秒前
samuealndjw发布了新的文献求助200
4秒前
冻干粉发布了新的文献求助10
4秒前
4秒前
一页书发布了新的文献求助10
4秒前
4秒前
30°C完成签到,获得积分20
4秒前
5秒前
syqlyd完成签到 ,获得积分10
5秒前
5秒前
5秒前
永远永远发布了新的文献求助10
6秒前
6秒前
LYQ15237208950完成签到 ,获得积分10
6秒前
木子囡月完成签到,获得积分10
6秒前
6秒前
局内人发布了新的文献求助10
6秒前
7秒前
善学以致用应助阳光彩虹采纳,获得10
7秒前
wanci应助kkem采纳,获得10
7秒前
杨晓柳完成签到,获得积分10
7秒前
8秒前
8秒前
马良完成签到,获得积分10
8秒前
整箱完成签到 ,获得积分10
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750468
求助须知:如何正确求助?哪些是违规求助? 5464085
关于积分的说明 15366838
捐赠科研通 4889446
什么是DOI,文献DOI怎么找? 2629235
邀请新用户注册赠送积分活动 1577526
关于科研通互助平台的介绍 1534012