Dissolved organic matter evolution and straw decomposition rate characterization under different water and fertilizer conditions based on three-dimensional fluorescence spectrum and deep learning

稻草 肥料 环境科学 表征(材料科学) 溶解有机碳 分解 有机质 荧光 深水 农学 化学 环境工程 土壤科学 环境化学 生态学 材料科学 地质学 纳米技术 海洋学 物理 无机化学 生物 量子力学
作者
Guang Yang,Hongwei Pan,Hongjun Lei,Wenbin Tong,Lili Shi,Huiru Chen
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:344: 118537-118537 被引量:30
标识
DOI:10.1016/j.jenvman.2023.118537
摘要

Straw returning is a sustainable way to utilize agricultural solid waste resources. However, incomplete decomposition of straw will cause harm to crop growth and soil quality. Currently, there is a lack of technology to timely monitor the rate of straw decomposition. Dissolved organic matter (DOM) is the most active organic matter in soil and straw is mainly immersed in the soil in the form of DOM. In order to formulate reasonable straw returning management measures , a timely monitoring method of straw decomposition rate was developed in the study. Three water treatment (60%–65%, 70%–75% and 80%–85% maximum field capacity) and two fertilizer (organic fertilizer and chemical fertilizer) were set up in the management of straw returning to the field. Litterbag method was used to monitor the weight loss rate of straw decomposition under different water and fertilizer conditions in strawberry growth stage. The changes of DOM components were determined by three-dimensional fluorescence spectroscopy (3D-EEM). From the faster decomposition period to the slower decomposition period, the main components of DOM changed from protein-like components to humus-like components. At the end of the experiment, the relative content of humus-like components under the treatment of organic fertilizer and moderate water was the highest. Convolutional neural network (CNN) combined with 3D-EEM was used to identify the decomposition speed of straw. The classification precision of neural network validation set and test are 85.7% and 81.2%, respectively. In order to predict the decomposition rate of straw under different water and fertilizer conditions, 3D-EEM data of DOM were used as the input of CNN, parallel factor analysis (PARAFAC) and fluorescence region integral (FRI), and dissolved organic carbon data were used as the input of dissolved organic carbon linear prediction. The prediction model based on CNN had the best effect (R2 = 0.987). The results show that this method can effectively identify the spectral characteristics and predict the decomposition rate of straw under different conditions of water and fertilizer, which is helpful to promote the efficient decomposition of straw.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七发布了新的文献求助30
1秒前
2秒前
待烟散尽云起时完成签到,获得积分10
2秒前
斯文以蓝发布了新的文献求助10
2秒前
kumarr发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
搜集达人应助英勇的幻露采纳,获得80
4秒前
王梓萌发布了新的文献求助10
5秒前
科研通AI6应助风清扬采纳,获得10
5秒前
5秒前
6秒前
6秒前
云村村民完成签到,获得积分10
7秒前
ky一下发布了新的文献求助10
7秒前
喵喵完成签到 ,获得积分10
7秒前
7秒前
7秒前
顺心纸鹤发布了新的文献求助10
8秒前
8秒前
脑洞疼应助Richard采纳,获得10
8秒前
聂落雁完成签到,获得积分10
9秒前
Jonathan完成签到,获得积分10
9秒前
浮游应助秋风之墩采纳,获得10
9秒前
KeYang完成签到,获得积分10
10秒前
10秒前
10秒前
ysxl发布了新的文献求助10
11秒前
清秀青荷完成签到,获得积分10
11秒前
科研通AI6应助WYS采纳,获得50
11秒前
11秒前
科研通AI6应助xwxhbydmet采纳,获得10
12秒前
热心的送终完成签到 ,获得积分10
12秒前
thuuu完成签到,获得积分10
12秒前
子车谷波完成签到,获得积分10
12秒前
鳗鱼绿蝶发布了新的文献求助10
13秒前
zhucc发布了新的文献求助10
13秒前
14秒前
14秒前
sunny发布了新的文献求助30
14秒前
myc641发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244