Deep residual networks for gravitational wave detection

引力波 利戈 计算机科学 旋转 参数空间 算法 残余物 二进制数 人工智能 灵敏度(控制系统) 规范化(社会学) 物理 机器学习 天体物理学 数学 电子工程 统计 社会学 工程类 算术 凝聚态物理 人类学
作者
Paraskevi Nousi,Alexandra E. Koloniari,Nikolaos Passalis,Panagiotis Iosif,Nikolaos Stergioulas,Anastasios Tefas
出处
期刊:Physical review [American Physical Society]
卷期号:108 (2) 被引量:2
标识
DOI:10.1103/physrevd.108.024022
摘要

Traditionally, gravitational waves are detected with techniques such as matched filtering or unmodeled searches based on wavelets. However, in the case of generic black hole binaries with nonaligned spins, if one wants to explore the whole parameter space, matched filtering can become impractical, which sets severe restrictions on the sensitivity and computational efficiency of gravitational-wave searches. Here, we use a novel combination of machine-learning algorithms and arrive at sensitive distances that surpass traditional techniques in a specific setting. Moreover, the computational cost is only a small fraction of the computational cost of matched filtering. The main ingredients are a 54-layer deep residual network (ResNet), a deep adaptive input normalization (DAIN), a dynamic dataset augmentation, and curriculum learning, based on an empirical relation for the signal-to-noise ratio. We compare the algorithm's sensitivity with two traditional algorithms on a dataset consisting of a large number of injected waveforms of nonaligned binary black hole mergers in real LIGO O3a noise samples. Our machine-learning algorithm can be used in upcoming rapid online searches of gravitational-wave events in a sizeable portion of the astrophysically interesting parameter space. We make our code, AResGW, and detailed results publicly available at https://github.com/vivinousi/gw-detection-deep-learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rym完成签到 ,获得积分10
刚刚
柔弱熊猫完成签到 ,获得积分10
刚刚
慧妞完成签到 ,获得积分10
刚刚
包容追命发布了新的文献求助10
1秒前
kc135完成签到,获得积分10
1秒前
3秒前
3秒前
Akim应助EVEN采纳,获得10
4秒前
4秒前
彭于晏应助WJ1989采纳,获得10
4秒前
xiangrikui完成签到,获得积分0
5秒前
江岸与城完成签到 ,获得积分10
6秒前
7秒前
CodeCraft应助董啊采纳,获得10
7秒前
魔力巴啦啦完成签到 ,获得积分10
8秒前
自信雅琴发布了新的文献求助20
8秒前
8秒前
许鑫蓁完成签到 ,获得积分10
8秒前
lulu加油完成签到,获得积分10
9秒前
9秒前
xiangrikui发布了新的文献求助10
9秒前
牛马完成签到 ,获得积分10
10秒前
科研通AI5应助WJH采纳,获得10
11秒前
Zard发布了新的文献求助10
11秒前
王冉冉完成签到,获得积分10
12秒前
ryan1300完成签到 ,获得积分10
12秒前
易拉罐完成签到,获得积分10
12秒前
ZQ完成签到,获得积分10
12秒前
yyds完成签到,获得积分20
12秒前
12秒前
13秒前
彭于晏应助刘宇采纳,获得10
13秒前
14秒前
leeom发布了新的文献求助10
16秒前
Timo干物类完成签到,获得积分10
16秒前
北冥有鱼给北冥有鱼的求助进行了留言
16秒前
16秒前
王冉冉发布了新的文献求助30
16秒前
Ava应助易拉罐采纳,获得10
17秒前
隐形曼青应助无心的土豆采纳,获得10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048