亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein

力场(虚构) 分子动力学 分子内力 计算机科学 人工神经网络 蛮力 化学 计算化学 人工智能 计算机安全 立体化学
作者
Pan Zhang,Weitao Yang
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (2) 被引量:4
标识
DOI:10.1063/5.0142280
摘要

Molecular dynamics (MD) is an extremely powerful, highly effective, and widely used approach to understanding the nature of chemical processes in atomic details for proteins. The accuracy of results from MD simulations is highly dependent on force fields. Currently, molecular mechanical (MM) force fields are mainly utilized in MD simulations because of their low computational cost. Quantum mechanical (QM) calculation has high accuracy, but it is exceedingly time consuming for protein simulations. Machine learning (ML) provides the capability for generating accurate potential at the QM level without increasing much computational effort for specific systems that can be studied at the QM level. However, the construction of general machine learned force fields, needed for broad applications and large and complex systems, is still challenging. Here, general and transferable neural network (NN) force fields based on CHARMM force fields, named CHARMM-NN, are constructed for proteins by training NN models on 27 fragments partitioned from the residue-based systematic molecular fragmentation (rSMF) method. The NN for each fragment is based on atom types and uses new input features that are similar to MM inputs, including bonds, angles, dihedrals, and non-bonded terms, which enhance the compatibility of CHARMM-NN to MM MD and enable the implementation of CHARMM-NN force fields in different MD programs. While the main part of the energy of the protein is based on rSMF and NN, the nonbonded interactions between the fragments and with water are taken from the CHARMM force field through mechanical embedding. The validations of the method for dipeptides on geometric data, relative potential energies, and structural reorganization energies demonstrate that the CHARMM-NN local minima on the potential energy surface are very accurate approximations to QM, showing the success of CHARMM-NN for bonded interactions. However, the MD simulations on peptides and proteins indicate that more accurate methods to represent protein-water interactions in fragments and non-bonded interactions between fragments should be considered in the future improvement of CHARMM-NN, which can increase the accuracy of approximation beyond the current mechanical embedding QM/MM level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leo完成签到 ,获得积分10
1秒前
MS903完成签到 ,获得积分10
1秒前
CJW完成签到 ,获得积分10
11秒前
18秒前
魔幻的毛巾完成签到,获得积分10
23秒前
俊逸如风完成签到 ,获得积分10
30秒前
38秒前
hwen1998发布了新的文献求助10
38秒前
英俊的铭应助科研通管家采纳,获得10
39秒前
爆米花应助漂亮的鸡采纳,获得10
44秒前
lin关闭了lin文献求助
46秒前
57秒前
1分钟前
漂亮的鸡发布了新的文献求助10
1分钟前
烟花应助桀骜采纳,获得10
1分钟前
hwen1998完成签到 ,获得积分10
1分钟前
HYQ完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
CYL07完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
ysssp完成签到,获得积分10
2分钟前
桀骜发布了新的文献求助10
2分钟前
桀骜完成签到,获得积分10
3分钟前
3分钟前
PCX完成签到,获得积分10
4分钟前
13679981516完成签到,获得积分10
4分钟前
4分钟前
ronnie147完成签到 ,获得积分10
4分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
Abdurrahman完成签到,获得积分10
4分钟前
4分钟前
Zoe完成签到,获得积分10
4分钟前
黄伊若完成签到 ,获得积分10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353475
求助须知:如何正确求助?哪些是违规求助? 2978095
关于积分的说明 8683663
捐赠科研通 2659409
什么是DOI,文献DOI怎么找? 1456252
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665016