Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein

力场(虚构) 分子动力学 分子内力 计算机科学 人工神经网络 蛮力 化学 计算化学 人工智能 计算机安全 立体化学
作者
Pan Zhang,Weitao Yang
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (2) 被引量:4
标识
DOI:10.1063/5.0142280
摘要

Molecular dynamics (MD) is an extremely powerful, highly effective, and widely used approach to understanding the nature of chemical processes in atomic details for proteins. The accuracy of results from MD simulations is highly dependent on force fields. Currently, molecular mechanical (MM) force fields are mainly utilized in MD simulations because of their low computational cost. Quantum mechanical (QM) calculation has high accuracy, but it is exceedingly time consuming for protein simulations. Machine learning (ML) provides the capability for generating accurate potential at the QM level without increasing much computational effort for specific systems that can be studied at the QM level. However, the construction of general machine learned force fields, needed for broad applications and large and complex systems, is still challenging. Here, general and transferable neural network (NN) force fields based on CHARMM force fields, named CHARMM-NN, are constructed for proteins by training NN models on 27 fragments partitioned from the residue-based systematic molecular fragmentation (rSMF) method. The NN for each fragment is based on atom types and uses new input features that are similar to MM inputs, including bonds, angles, dihedrals, and non-bonded terms, which enhance the compatibility of CHARMM-NN to MM MD and enable the implementation of CHARMM-NN force fields in different MD programs. While the main part of the energy of the protein is based on rSMF and NN, the nonbonded interactions between the fragments and with water are taken from the CHARMM force field through mechanical embedding. The validations of the method for dipeptides on geometric data, relative potential energies, and structural reorganization energies demonstrate that the CHARMM-NN local minima on the potential energy surface are very accurate approximations to QM, showing the success of CHARMM-NN for bonded interactions. However, the MD simulations on peptides and proteins indicate that more accurate methods to represent protein-water interactions in fragments and non-bonded interactions between fragments should be considered in the future improvement of CHARMM-NN, which can increase the accuracy of approximation beyond the current mechanical embedding QM/MM level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静傲丝完成签到 ,获得积分10
1秒前
自然的雨发布了新的文献求助10
2秒前
3秒前
雪白的山雁完成签到 ,获得积分10
3秒前
耶耶耶完成签到 ,获得积分10
5秒前
liberation完成签到 ,获得积分0
6秒前
fiell发布了新的文献求助10
8秒前
8秒前
小大巫完成签到,获得积分10
8秒前
as完成签到,获得积分20
8秒前
xzy998应助默默的巧荷采纳,获得10
8秒前
9秒前
兴奋曼凡完成签到,获得积分10
9秒前
10秒前
drzz完成签到,获得积分10
12秒前
岂有此李完成签到,获得积分10
12秒前
坚强的依凝完成签到,获得积分10
13秒前
14秒前
昏昏完成签到 ,获得积分10
14秒前
不过尔尔完成签到 ,获得积分10
15秒前
刘宏完成签到,获得积分10
16秒前
可以完成签到,获得积分10
16秒前
17秒前
坚强枫完成签到,获得积分10
18秒前
默默的巧荷完成签到,获得积分10
19秒前
一叶知秋完成签到,获得积分10
20秒前
小杰瑞完成签到,获得积分20
20秒前
希望天下0贩的0应助可以采纳,获得10
20秒前
白色梨花发布了新的文献求助10
20秒前
21秒前
包容柜子发布了新的文献求助10
21秒前
fiell完成签到,获得积分10
22秒前
眼睛大的擎苍给眼睛大的擎苍的求助进行了留言
22秒前
呆萌滑板完成签到 ,获得积分10
23秒前
23秒前
瑶瑶完成签到,获得积分10
24秒前
小猪找库里完成签到,获得积分10
25秒前
zhuzhen007完成签到 ,获得积分10
26秒前
淡定的秀发完成签到,获得积分10
26秒前
xuan完成签到,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048