Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein

力场(虚构) 分子动力学 分子内力 计算机科学 人工神经网络 蛮力 化学 计算化学 人工智能 计算机安全 立体化学
作者
Pan Zhang,Weitao Yang
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (2) 被引量:4
标识
DOI:10.1063/5.0142280
摘要

Molecular dynamics (MD) is an extremely powerful, highly effective, and widely used approach to understanding the nature of chemical processes in atomic details for proteins. The accuracy of results from MD simulations is highly dependent on force fields. Currently, molecular mechanical (MM) force fields are mainly utilized in MD simulations because of their low computational cost. Quantum mechanical (QM) calculation has high accuracy, but it is exceedingly time consuming for protein simulations. Machine learning (ML) provides the capability for generating accurate potential at the QM level without increasing much computational effort for specific systems that can be studied at the QM level. However, the construction of general machine learned force fields, needed for broad applications and large and complex systems, is still challenging. Here, general and transferable neural network (NN) force fields based on CHARMM force fields, named CHARMM-NN, are constructed for proteins by training NN models on 27 fragments partitioned from the residue-based systematic molecular fragmentation (rSMF) method. The NN for each fragment is based on atom types and uses new input features that are similar to MM inputs, including bonds, angles, dihedrals, and non-bonded terms, which enhance the compatibility of CHARMM-NN to MM MD and enable the implementation of CHARMM-NN force fields in different MD programs. While the main part of the energy of the protein is based on rSMF and NN, the nonbonded interactions between the fragments and with water are taken from the CHARMM force field through mechanical embedding. The validations of the method for dipeptides on geometric data, relative potential energies, and structural reorganization energies demonstrate that the CHARMM-NN local minima on the potential energy surface are very accurate approximations to QM, showing the success of CHARMM-NN for bonded interactions. However, the MD simulations on peptides and proteins indicate that more accurate methods to represent protein-water interactions in fragments and non-bonded interactions between fragments should be considered in the future improvement of CHARMM-NN, which can increase the accuracy of approximation beyond the current mechanical embedding QM/MM level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tylerconan完成签到,获得积分10
刚刚
李国铭发布了新的文献求助10
刚刚
Akim应助东方耀采纳,获得10
刚刚
荔枝球球完成签到,获得积分10
刚刚
NoMigraine发布了新的文献求助20
1秒前
我是老大应助xdc采纳,获得10
1秒前
小吴发布了新的文献求助10
1秒前
红木白花发布了新的文献求助10
1秒前
wangwei完成签到 ,获得积分10
1秒前
共享精神应助hhh采纳,获得10
2秒前
3秒前
3秒前
lalafish完成签到,获得积分0
3秒前
3秒前
4秒前
4秒前
64658应助清秀的怀蕊采纳,获得10
4秒前
Solitude_Z完成签到,获得积分10
5秒前
七七完成签到,获得积分10
5秒前
今后应助hammer采纳,获得10
5秒前
科研助手6应助甜甜的觅夏采纳,获得10
6秒前
XLX完成签到,获得积分10
6秒前
gxm发布了新的文献求助10
6秒前
华仔应助xzDoctor采纳,获得10
6秒前
CodeCraft应助小唐采纳,获得10
7秒前
健壮的便当完成签到,获得积分10
7秒前
7秒前
7秒前
yankai完成签到,获得积分10
7秒前
177发布了新的文献求助10
7秒前
8秒前
8秒前
森森发布了新的文献求助30
9秒前
看看不要钱完成签到,获得积分10
9秒前
羊白玉完成签到 ,获得积分10
9秒前
小二郎应助繁荣的行天采纳,获得10
9秒前
Felix发布了新的文献求助30
9秒前
微醺小王发布了新的文献求助10
10秒前
Engen完成签到,获得积分10
10秒前
yar应助肖敏采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969383
求助须知:如何正确求助?哪些是违规求助? 3514211
关于积分的说明 11172730
捐赠科研通 3249476
什么是DOI,文献DOI怎么找? 1794909
邀请新用户注册赠送积分活动 875441
科研通“疑难数据库(出版商)”最低求助积分说明 804827