清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein

力场(虚构) 分子动力学 分子内力 计算机科学 人工神经网络 蛮力 化学 计算化学 人工智能 计算机安全 立体化学
作者
Pan Zhang,Weitao Yang
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (2) 被引量:4
标识
DOI:10.1063/5.0142280
摘要

Molecular dynamics (MD) is an extremely powerful, highly effective, and widely used approach to understanding the nature of chemical processes in atomic details for proteins. The accuracy of results from MD simulations is highly dependent on force fields. Currently, molecular mechanical (MM) force fields are mainly utilized in MD simulations because of their low computational cost. Quantum mechanical (QM) calculation has high accuracy, but it is exceedingly time consuming for protein simulations. Machine learning (ML) provides the capability for generating accurate potential at the QM level without increasing much computational effort for specific systems that can be studied at the QM level. However, the construction of general machine learned force fields, needed for broad applications and large and complex systems, is still challenging. Here, general and transferable neural network (NN) force fields based on CHARMM force fields, named CHARMM-NN, are constructed for proteins by training NN models on 27 fragments partitioned from the residue-based systematic molecular fragmentation (rSMF) method. The NN for each fragment is based on atom types and uses new input features that are similar to MM inputs, including bonds, angles, dihedrals, and non-bonded terms, which enhance the compatibility of CHARMM-NN to MM MD and enable the implementation of CHARMM-NN force fields in different MD programs. While the main part of the energy of the protein is based on rSMF and NN, the nonbonded interactions between the fragments and with water are taken from the CHARMM force field through mechanical embedding. The validations of the method for dipeptides on geometric data, relative potential energies, and structural reorganization energies demonstrate that the CHARMM-NN local minima on the potential energy surface are very accurate approximations to QM, showing the success of CHARMM-NN for bonded interactions. However, the MD simulations on peptides and proteins indicate that more accurate methods to represent protein-water interactions in fragments and non-bonded interactions between fragments should be considered in the future improvement of CHARMM-NN, which can increase the accuracy of approximation beyond the current mechanical embedding QM/MM level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
叁月二完成签到 ,获得积分10
2秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
苹果完成签到 ,获得积分10
17秒前
32秒前
郑琦敏钰完成签到 ,获得积分10
34秒前
36秒前
立行完成签到 ,获得积分10
38秒前
45秒前
48秒前
XD824发布了新的文献求助10
49秒前
优雅的WAN完成签到 ,获得积分10
1分钟前
1分钟前
热情的橙汁完成签到,获得积分10
1分钟前
1分钟前
个性的紫菜应助hugeyoung采纳,获得30
1分钟前
靓丽宛亦完成签到 ,获得积分10
1分钟前
hugeyoung完成签到,获得积分10
1分钟前
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Wen完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
LMW应助lee采纳,获得10
2分钟前
XD824发布了新的文献求助10
2分钟前
sfjww发布了新的文献求助30
2分钟前
中恐完成签到,获得积分0
2分钟前
2分钟前
xun应助lee采纳,获得30
2分钟前
浚稚完成签到 ,获得积分10
3分钟前
3分钟前
Ava应助如沐春风采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098