Boosting(机器学习)
随机森林
集成学习
机器学习
人工智能
决策树
激光诱导击穿光谱
计算机科学
梯度升压
交替决策树
人工神经网络
支持向量机
引导聚合
骨料(复合)
背景(考古学)
无监督学习
光谱学
决策树学习
地理
材料科学
纳米技术
物理
量子力学
增量决策树
考古
作者
Erik Képeš,Jakub Vrábel,Josette El Haddad,A. Harhira,Pavel Pořízka,Jozef Kaiser
标识
DOI:10.1002/9781119758396.ch15
摘要
This chapter presents the fundamental ideas behind the most common machine-learning (ML) techniques found in the laser-induced breakdown spectroscopy literature. It describes random forests, support vector machines, artificial neural networks, unsupervised learning, and self-organizing maps. The chapter begins, for historical reasons, with one of the first ML algorithms – decision trees. Using the concept of decision trees, it then conceptually introduces several ensemble methods, i.e., methods that combine or aggregate the results of multiple simple models to form a more powerful prediction. Namely, the chapter discusses bootstrap aggregation (bagging), boosting and its more powerful variant, gradient boosting, and lastly, random forests. It emphasizes that while the ensemble methods are described considering decision trees, they are not limited to trees. Thus, the presented ensembling methods can be applied to improve the performance of any other ML model.
科研通智能强力驱动
Strongly Powered by AbleSci AI