An easy-to-use artificial intelligence preoperative lymph node metastasis predictor (LN-MASTER) in rectal cancer based on a privacy-preserving computing platform: multicenter retrospective cohort study

医学 淋巴结转移 结直肠癌 回顾性队列研究 节点(物理) 淋巴结 肿瘤科 普通外科 癌症 内科学 转移 结构工程 工程类
作者
Xu Guan,Guanyu Yu,Wei Zhang,Rongbo Wen,Ran Wei,Shuai Jiao,Qing Zhao,Zheng Lou,Liqiang Hao,Enrui Liu,Xianhua Gao,Guiyu Wang,Wei Zhang,Xishan Wang
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:109 (3): 255-265 被引量:1
标识
DOI:10.1097/js9.0000000000000067
摘要

Although the surgical treatment strategy for rectal cancer (RC) is usually based on the preoperative diagnosis of lymph node metastasis (LNM), the accurate diagnosis of LNM has been a clinical challenge. In this study, we developed machine learning (ML) models to predict the LNM status before surgery based on a privacy-preserving computing platform (PPCP) and created a web tool to help clinicians with treatment-based decision-making in RC patients.A total of 6578 RC patients were enrolled in this study. ML models, including logistic regression, support vector machine, extreme gradient boosting (XGB), and random forest, were used to establish the prediction models. The areas under the receiver operating characteristic curves (AUCs) were calculated to compare the accuracy of the ML models with the US guidelines and clinical diagnosis of LNM. Last, model establishment and validation were performed in the PPCP without the exchange of raw data among different institutions.LNM was detected in 1006 (35.3%), 252 (35.3%), 581 (32.9%), and 342 (27.4%) RC patients in the training, test, and external validation sets 1 and 2, respectively. The XGB model identified the optimal model with an AUC of 0.84 [95% confidence interval (CI), 0.83-0.86] compared with the logistic regression model (AUC, 0.76; 95% CI, 0.74-0.78), random forest model (AUC, 0.82; 95% CI, 0.81-0.84), and support vector machine model (AUC, 0.79; 95% CI, 0.78-0.81). Furthermore, the XGB model showed higher accuracy than the predictive factors of the US guidelines and clinical diagnosis. The predictive XGB model was embedded in a web tool (named LN-MASTER) to predict the LNM status for RC.The proposed easy-to-use model showed good performance for LNM prediction, and the web tool can help clinicians make treatment-based decisions for patients with RC. Furthermore, PPCP enables state-of-the-art model development despite the limited local data availability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tao关闭了tao文献求助
刚刚
pp完成签到 ,获得积分10
2秒前
2秒前
张光光完成签到 ,获得积分10
3秒前
NXK发布了新的文献求助10
3秒前
5秒前
lalalalala发布了新的文献求助10
5秒前
李健应助西交生医采纳,获得10
6秒前
科研通AI2S应助整齐醉冬采纳,获得10
8秒前
8秒前
10秒前
10秒前
激情的函发布了新的文献求助10
11秒前
无花果应助lalalalala采纳,获得10
11秒前
极度厌蠢应助gaint采纳,获得20
11秒前
CodeCraft应助gaint采纳,获得10
11秒前
一一应助狂野世立采纳,获得10
13秒前
14秒前
大胆短靴完成签到,获得积分10
14秒前
14秒前
15秒前
Elvira发布了新的文献求助10
16秒前
七月完成签到,获得积分10
17秒前
无奈梦岚发布了新的文献求助10
17秒前
18秒前
19秒前
糊涂生活糊涂过完成签到 ,获得积分10
19秒前
20秒前
Amber发布了新的文献求助10
20秒前
传奇3应助xjx采纳,获得10
21秒前
21秒前
22秒前
Grayball应助狂野世立采纳,获得10
22秒前
碧蓝飞槐完成签到,获得积分20
22秒前
石头完成签到,获得积分10
24秒前
碧蓝飞槐发布了新的文献求助10
25秒前
hehe0086发布了新的文献求助10
25秒前
25秒前
孤鸿.完成签到 ,获得积分10
25秒前
熊大发布了新的文献求助10
26秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349498
求助须知:如何正确求助?哪些是违规求助? 2975547
关于积分的说明 8669764
捐赠科研通 2656354
什么是DOI,文献DOI怎么找? 1454554
科研通“疑难数据库(出版商)”最低求助积分说明 673381
邀请新用户注册赠送积分活动 663821