An easy-to-use artificial intelligence preoperative lymph node metastasis predictor (LN-MASTER) in rectal cancer based on a privacy-preserving computing platform: multicenter retrospective cohort study

医学 淋巴结转移 结直肠癌 回顾性队列研究 节点(物理) 淋巴结 肿瘤科 普通外科 癌症 内科学 转移 结构工程 工程类
作者
Xu Guan,Guanyu Yu,Wei Zhang,Rongbo Wen,Ran Wei,Shuai Jiao,Qing Zhao,Zheng Lou,Liqiang Hao,Enrui Liu,Xianhua Gao,Guiyu Wang,Wei Zhang,Xishan Wang
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:109 (3): 255-265 被引量:1
标识
DOI:10.1097/js9.0000000000000067
摘要

Although the surgical treatment strategy for rectal cancer (RC) is usually based on the preoperative diagnosis of lymph node metastasis (LNM), the accurate diagnosis of LNM has been a clinical challenge. In this study, we developed machine learning (ML) models to predict the LNM status before surgery based on a privacy-preserving computing platform (PPCP) and created a web tool to help clinicians with treatment-based decision-making in RC patients.A total of 6578 RC patients were enrolled in this study. ML models, including logistic regression, support vector machine, extreme gradient boosting (XGB), and random forest, were used to establish the prediction models. The areas under the receiver operating characteristic curves (AUCs) were calculated to compare the accuracy of the ML models with the US guidelines and clinical diagnosis of LNM. Last, model establishment and validation were performed in the PPCP without the exchange of raw data among different institutions.LNM was detected in 1006 (35.3%), 252 (35.3%), 581 (32.9%), and 342 (27.4%) RC patients in the training, test, and external validation sets 1 and 2, respectively. The XGB model identified the optimal model with an AUC of 0.84 [95% confidence interval (CI), 0.83-0.86] compared with the logistic regression model (AUC, 0.76; 95% CI, 0.74-0.78), random forest model (AUC, 0.82; 95% CI, 0.81-0.84), and support vector machine model (AUC, 0.79; 95% CI, 0.78-0.81). Furthermore, the XGB model showed higher accuracy than the predictive factors of the US guidelines and clinical diagnosis. The predictive XGB model was embedded in a web tool (named LN-MASTER) to predict the LNM status for RC.The proposed easy-to-use model showed good performance for LNM prediction, and the web tool can help clinicians make treatment-based decisions for patients with RC. Furthermore, PPCP enables state-of-the-art model development despite the limited local data availability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
想有所成完成签到,获得积分10
刚刚
猫屿发布了新的文献求助10
1秒前
幽默白柏发布了新的文献求助10
1秒前
香蕉觅云应助时年采纳,获得10
1秒前
abc完成签到,获得积分10
1秒前
正己化人应助ABBCCC采纳,获得10
2秒前
sweetpotato完成签到,获得积分10
2秒前
2秒前
2秒前
王智勇给王智勇的求助进行了留言
2秒前
2秒前
3秒前
思源应助平淡树叶采纳,获得10
3秒前
上官若男应助符雁采纳,获得10
4秒前
4秒前
熊本熊完成签到,获得积分10
4秒前
水流众生完成签到,获得积分10
4秒前
想有所成发布了新的文献求助10
5秒前
5秒前
sweetpotato发布了新的文献求助30
6秒前
小蘑菇应助yan采纳,获得10
6秒前
哈哈哈发布了新的文献求助10
6秒前
6秒前
7秒前
负责的皮卡丘应助胡一菲采纳,获得10
7秒前
田様应助热心凡雁采纳,获得10
7秒前
8秒前
小马甲应助陆智杰采纳,获得10
8秒前
Snoopy发布了新的文献求助10
8秒前
科研通AI6应助安宁采纳,获得10
8秒前
uu完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI6应助Revovler采纳,获得10
10秒前
hui完成签到,获得积分10
10秒前
10秒前
温酒随行发布了新的文献求助10
10秒前
江江酱完成签到,获得积分10
11秒前
雅雅乐发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072971
求助须知:如何正确求助?哪些是违规求助? 4293165
关于积分的说明 13377479
捐赠科研通 4114472
什么是DOI,文献DOI怎么找? 2252995
邀请新用户注册赠送积分活动 1257787
关于科研通互助平台的介绍 1190665