作者
Inas F. Aboobakar,Tyler G. Kinzy,Yan Zhao,Bao Jian Fan,Louis R. Pasquale,Ayub Qassim,Antonia Kolovos,Joshua Schmidt,Jamie E Craig,Jessica N. Cooke Bailey,Janey L. Wiggs,R. Rand Allingham,Murray H. Brilliant,Donald L. Budenz,Jessica N. Cooke Bailey,John H. Fingert,Douglas E. Gaasterland,Teresa Gaasterland,Jonathan L. Haines,Michael A. Hauser,Richard K. Lee,Paul R. Lichter,Yutao Liu,Sayoko E. Moroi,Jonathan S. Myers,Louis R. Pasquale,Margaret A. Pericak‐Vance,Anthony Realini,Doug Rhee,Julia E. Richards,Robert Ritch,Joel S Schuman,William K. Scott,Kuldev Singh,Arthur J. Sit,Douglas Vollrath,Robert N. Weinreb,Janey L. Wiggs,Gadi Wollstein,Donald J. Zack
摘要
Purpose Genetic variants in regions that include the mitochondrial genes thioredoxin reductase 2 (TXNRD2) and malic enzyme 3 (ME3) are associated with primary open-angle glaucoma (POAG) in genome-wide association studies (GWASs). To assess their clinical impact, we investigated whether TXNRD2 and ME3 genetic risk scores (GRSs) are associated with specific glaucoma phenotypes. Design Cross-sectional study. Participants A total of 2617 patients with POAG and 2634 control participants from the National Eye Institute Glaucoma Human Genetics Collaboration Hereditable Overall Operational Database (NEIGHBORHOOD) consortium. Methods All POAG-associated single nucleotide polymorphisms (SNPs) in the TXNRD2 and ME3 loci were identified using GWAS data (P < 0.05). Of these, 20 TXNRD2 and 24 ME3 SNPs were selected after adjusting for linkage disequilibrium. The correlation between SNP effect size and gene expression levels was investigated using the Gene-Tissue Expression database. Genetic risk scores were constructed for each individual using the unweighted sum of TXNRD2, ME3, and TXNRD2 + ME3 combined risk alleles. Age- and sex-adjusted odds ratios (ORs) for POAG diagnosis were calculated per decile for each GRS. Additionally, the clinical features of patients with POAG in the top 1%, 5%, and 10% of each GRS were compared with those in the bottom 1%, 5%, and 10%, respectively. Main Outcome Measures Primary open-angle glaucoma OR per GRS decile, maximum treated intraocular pressure (IOP), and prevalence of paracentral visual field loss among patients with POAG with high versus low GRSs. Results A larger SNP effect size strongly correlated with higher TXNRD2 and lower ME3 expression levels (r = 0.95 and r = –0.97, respectively; P < 0.05 for both). Individuals in decile 10 of the TXNRD2 + ME3 GRS had the highest odds of POAG diagnosis (OR, 1.79 compared with decile 1; 95% confidence interval, 1.39–2.30; P < 0.001). Patients with POAG in the top 1% of the TXNRD2 GRS showed higher mean maximum treated IOP compared with the bottom 1% (19.9 mmHg vs. 15.6 mmHg; adjusted P = 0.03). Patients with POAG in the top 1% of the ME3 and TXNRD2 + ME3 GRS showed a higher prevalence of paracentral field loss than the bottom 1% (72.7% vs. 14.3% for ME3 GRS and 88.9% vs. 33.3% for TXNRD2+ME3 GRS; adjusted P = 0.03 for both). Conclusions Patients with POAG with higher TXNRD2 and ME3 GRSs showed higher treated IOP and a greater prevalence of paracentral field loss. Functional studies exploring how these variants impact mitochondrial function in patients with glaucoma are warranted. Financial Disclosure(s) Proprietary or commercial disclosure may be found after the references. Genetic variants in regions that include the mitochondrial genes thioredoxin reductase 2 (TXNRD2) and malic enzyme 3 (ME3) are associated with primary open-angle glaucoma (POAG) in genome-wide association studies (GWASs). To assess their clinical impact, we investigated whether TXNRD2 and ME3 genetic risk scores (GRSs) are associated with specific glaucoma phenotypes. Cross-sectional study. A total of 2617 patients with POAG and 2634 control participants from the National Eye Institute Glaucoma Human Genetics Collaboration Hereditable Overall Operational Database (NEIGHBORHOOD) consortium. All POAG-associated single nucleotide polymorphisms (SNPs) in the TXNRD2 and ME3 loci were identified using GWAS data (P < 0.05). Of these, 20 TXNRD2 and 24 ME3 SNPs were selected after adjusting for linkage disequilibrium. The correlation between SNP effect size and gene expression levels was investigated using the Gene-Tissue Expression database. Genetic risk scores were constructed for each individual using the unweighted sum of TXNRD2, ME3, and TXNRD2 + ME3 combined risk alleles. Age- and sex-adjusted odds ratios (ORs) for POAG diagnosis were calculated per decile for each GRS. Additionally, the clinical features of patients with POAG in the top 1%, 5%, and 10% of each GRS were compared with those in the bottom 1%, 5%, and 10%, respectively. Primary open-angle glaucoma OR per GRS decile, maximum treated intraocular pressure (IOP), and prevalence of paracentral visual field loss among patients with POAG with high versus low GRSs. A larger SNP effect size strongly correlated with higher TXNRD2 and lower ME3 expression levels (r = 0.95 and r = –0.97, respectively; P < 0.05 for both). Individuals in decile 10 of the TXNRD2 + ME3 GRS had the highest odds of POAG diagnosis (OR, 1.79 compared with decile 1; 95% confidence interval, 1.39–2.30; P < 0.001). Patients with POAG in the top 1% of the TXNRD2 GRS showed higher mean maximum treated IOP compared with the bottom 1% (19.9 mmHg vs. 15.6 mmHg; adjusted P = 0.03). Patients with POAG in the top 1% of the ME3 and TXNRD2 + ME3 GRS showed a higher prevalence of paracentral field loss than the bottom 1% (72.7% vs. 14.3% for ME3 GRS and 88.9% vs. 33.3% for TXNRD2+ME3 GRS; adjusted P = 0.03 for both). Patients with POAG with higher TXNRD2 and ME3 GRSs showed higher treated IOP and a greater prevalence of paracentral field loss. Functional studies exploring how these variants impact mitochondrial function in patients with glaucoma are warranted.