Mobile agent path planning under uncertain environment using reinforcement learning and probabilistic model checking

强化学习 计算机科学 概率逻辑 概率CTL 可靠性(半导体) 马尔可夫链 增强学习 马尔可夫决策过程 运动规划 路径(计算) 人工智能 数学优化 机器学习 马尔可夫过程 算法的概率分析 数学 机器人 物理 统计 功率(物理) 程序设计语言 量子力学
作者
Xia Wang,Jun Liu,Chris Nugent,Ian Cleland,Yang Xu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:264: 110355-110355 被引量:6
标识
DOI:10.1016/j.knosys.2023.110355
摘要

The major challenge in mobile agent path planning, within an uncertain environment, is effectively determining an optimal control model to discover the target location as quickly as possible and evaluating the control system’s reliability. To address this challenge, we introduce a learning-verification integrated mobile agent path planning method to achieve both the effectiveness and the reliability. More specifically, we first propose a modified Q-learning algorithm (a popular reinforcement learning algorithm), called QEA−learning algorithm, to find the best Q-table in the environment. We then determine the location transition probability matrix, and establish a probability model using the assumption that the agent selects a location with a higher Q-value. Secondly, the learnt behaviour of the mobile agent based on QEA−learning algorithm, is formalized as a Discrete-time Markov Chain (DTMC) model. Thirdly, the required reliability requirements of the mobile agent control system are specified using Probabilistic Computation Tree Logic (PCTL). In addition, the DTMC model and the specified properties are taken as the input of the Probabilistic Model Checker PRISM for automatic verification. This is preformed to evaluate and verify the control system’s reliability. Finally, a case study of a mobile agent walking in a grids map is used to illustrate the proposed learning algorithm. Here we have a special focus on the modelling approach demonstrating how PRISM can be used to analyse and evaluate the reliability of the mobile agent control system learnt via the proposed algorithm. The results show that the path identified using the proposed integrated method yields the largest expected reward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
七一桉完成签到 ,获得积分10
1秒前
隐形曼青应助okk采纳,获得10
2秒前
aimer发布了新的文献求助10
2秒前
3秒前
3秒前
yuky完成签到,获得积分10
3秒前
冷酷严青发布了新的文献求助10
3秒前
3秒前
12334发布了新的文献求助10
3秒前
廉不可发布了新的文献求助10
4秒前
4秒前
张晓昊发布了新的文献求助10
4秒前
yjc完成签到 ,获得积分10
5秒前
传奇3应助烤鸭本鸭采纳,获得10
5秒前
领导范儿应助swaggy采纳,获得10
5秒前
6秒前
ysq发布了新的文献求助10
6秒前
6秒前
Ray发布了新的文献求助10
6秒前
7秒前
jiao发布了新的文献求助10
7秒前
7秒前
王师傅发布了新的文献求助10
7秒前
爆米花应助樂楽采纳,获得10
8秒前
Ayaka2333发布了新的文献求助10
8秒前
9秒前
9秒前
罗浚航发布了新的文献求助10
9秒前
9秒前
ljh发布了新的文献求助10
10秒前
Jasper应助bemyselfelsa采纳,获得10
10秒前
10秒前
aimer完成签到,获得积分10
10秒前
10秒前
在水一方应助一鸣采纳,获得10
10秒前
ZCC发布了新的文献求助10
10秒前
呱呱完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009668
求助须知:如何正确求助?哪些是违规求助? 3549638
关于积分的说明 11302957
捐赠科研通 3284181
什么是DOI,文献DOI怎么找? 1810535
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355