Integrated dynamic framework for predicting urban flooding and providing early warning

积水 洪水(心理学) 预警系统 计算机科学 环境科学 随机性 大洪水 城市化 气象学 统计 数学 地理 心理治疗师 心理学 考古 经济 生物 电信 排水 经济增长 生态学
作者
Yihong Zhou,Zening Wu,Hongshi Xu,Huiliang Wang,Bingyan Ma,Hong Lv
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:618: 129205-129205 被引量:11
标识
DOI:10.1016/j.jhydrol.2023.129205
摘要

Urban flooding is a serious challenge in cities owing to global warming and rapid urbanization; thus, urban flood forecasting is required to reduce losses. Nevertheless, owing to the randomness and uncertainty of rainfall and ponding processes, providing accurate and stable ponding predictions using the existing prediction methods is difficult. To address these issues, this study proposes a time-varying criterion to improve the Bayesian model averaging (BMA) method and uses the time-varying BMA (TV-BMA) approach to develop an integrated model for predicting urban floods and providing early warning by dynamically coupling the results of the BMA and three machine-learning models. This integrated model was based on numerous measured data on rainfall and ponding processes, aiming to accurately predict real-time changes in ponding depth. The results show that the prediction accuracy of the TV-BMA model was 11.4–50.4 % higher than that of the BMA and individual models, and within the 95 % confidence interval. Moreover, the bandwidth of the TV-BMA model (0.038 m) was 19.1–53.1 % lower than that of the BMA (0.047 m) and individual models (0.063–0.081 m). This demonstrates that the TV-BMA model has significant advantages in correcting deviation and reducing uncertainty in the prediction results. Furthermore, the TV-BMA model has high accuracy in the early warning results for up to a 100-min forecast period (F-score > 0.8). The proposed TV-BMA model can predict urban floods with improved accuracy and stability. It may provide guidance for improving the existing urban flood prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
哭泣的海莲完成签到,获得积分10
2秒前
风为裳完成签到,获得积分10
3秒前
情怀应助why采纳,获得10
4秒前
热心灯泡完成签到,获得积分10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
ding应助科研通管家采纳,获得10
6秒前
可爱的函函应助黑大侠采纳,获得30
8秒前
8秒前
shine发布了新的文献求助10
9秒前
周洋完成签到,获得积分10
9秒前
吴彦祖发布了新的文献求助10
11秒前
13秒前
打打应助十八采纳,获得10
14秒前
大意的羊完成签到,获得积分10
15秒前
demoestar完成签到 ,获得积分10
16秒前
16秒前
zwy发布了新的文献求助10
17秒前
18秒前
19秒前
shine完成签到,获得积分10
20秒前
耶zyf发布了新的文献求助10
22秒前
8R60d8应助852采纳,获得10
22秒前
Spine Lin发布了新的文献求助10
22秒前
黑大侠发布了新的文献求助30
23秒前
23秒前
香蕉觅云应助拓跋雨梅采纳,获得10
25秒前
25秒前
赵焱峥完成签到,获得积分10
28秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141507
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803258
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302802
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240