Integrated dynamic framework for predicting urban flooding and providing early warning

积水 洪水(心理学) 预警系统 计算机科学 环境科学 随机性 大洪水 城市化 气象学 统计 数学 地理 心理治疗师 心理学 考古 经济 生物 电信 排水 经济增长 生态学
作者
Yihong Zhou,Zening Wu,Hongshi Xu,Huiliang Wang,Bingyan Ma,Hong Lv
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:618: 129205-129205 被引量:11
标识
DOI:10.1016/j.jhydrol.2023.129205
摘要

Urban flooding is a serious challenge in cities owing to global warming and rapid urbanization; thus, urban flood forecasting is required to reduce losses. Nevertheless, owing to the randomness and uncertainty of rainfall and ponding processes, providing accurate and stable ponding predictions using the existing prediction methods is difficult. To address these issues, this study proposes a time-varying criterion to improve the Bayesian model averaging (BMA) method and uses the time-varying BMA (TV-BMA) approach to develop an integrated model for predicting urban floods and providing early warning by dynamically coupling the results of the BMA and three machine-learning models. This integrated model was based on numerous measured data on rainfall and ponding processes, aiming to accurately predict real-time changes in ponding depth. The results show that the prediction accuracy of the TV-BMA model was 11.4–50.4 % higher than that of the BMA and individual models, and within the 95 % confidence interval. Moreover, the bandwidth of the TV-BMA model (0.038 m) was 19.1–53.1 % lower than that of the BMA (0.047 m) and individual models (0.063–0.081 m). This demonstrates that the TV-BMA model has significant advantages in correcting deviation and reducing uncertainty in the prediction results. Furthermore, the TV-BMA model has high accuracy in the early warning results for up to a 100-min forecast period (F-score > 0.8). The proposed TV-BMA model can predict urban floods with improved accuracy and stability. It may provide guidance for improving the existing urban flood prediction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落落发布了新的文献求助10
1秒前
称心热狗完成签到,获得积分10
1秒前
2秒前
2秒前
张超逸完成签到,获得积分10
3秒前
mouxq发布了新的文献求助10
3秒前
4秒前
Chimmy完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
Han发布了新的文献求助10
6秒前
wuchang发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
陈晶完成签到,获得积分10
8秒前
9秒前
wuliww发布了新的文献求助10
9秒前
调皮的灰狼完成签到,获得积分10
9秒前
年少轻狂发布了新的文献求助10
11秒前
11秒前
luo发布了新的文献求助10
12秒前
年轻馒头发布了新的文献求助10
14秒前
阿俊1212完成签到,获得积分10
15秒前
研友_ZlqeD8完成签到,获得积分10
15秒前
16秒前
万能图书馆应助雨双采纳,获得10
17秒前
18秒前
19秒前
xxxxxxxx完成签到,获得积分10
21秒前
顺利的觅云完成签到,获得积分10
21秒前
斯文败类应助li采纳,获得10
22秒前
酷波er应助小南采纳,获得10
22秒前
烟花应助落落采纳,获得30
22秒前
晒黑的雪碧完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
26秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916