Boosting photoelectron transport in Zn0.5Cd0.5S/Sn3O4 heterostructure through close interface contact for enhancing photocatalytic H2 generation and degradation of tetracycline hydrochloride

盐酸四环素 光催化 异质结 降级(电信) 制氢 量子产额 化学工程 材料科学 可见光谱 化学 四环素 纳米技术 光化学 光电子学 催化作用 计算机科学 光学 物理 工程类 有机化学 生物化学 荧光 抗生素 电信
作者
Xiangyu Zhou,Jingbo Wu,Yan Xiao,Yinhua Jiang,Wenli Zhang,Yan Liu,Zhanchao Liu,Jianming Zhang
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:311: 123243-123243 被引量:34
标识
DOI:10.1016/j.seppur.2023.123243
摘要

Reasonable design and construction of heterogeneous photocatalysts with close interface contact are considered as the effective strategy to realize the application of highly efficient solar for hydrogen evolution and pollutant degradation. Here, a novel Zn0.5Cd0.5S nanospheres/Sn3O4 nanosheets (ZCS/SO) heterostructure photocatalyst was firstly synthesized using a simple hydrothermal method, where Zn0.5Cd0.5S nanospheres in-situ grew on the surfaces of Sn3O4 nanosheets derived by ultrasonicating Sn3O4 nanoflowers. The synthesized ZCS/SO heterostructure exhibited much higher photocatalytic activity for H2 production and tetracycline hydrochloride (TCH) degradation than pristine Sn3O4 and Zn0.5Cd0.5S. The optimal ZCS/SO-10 performed the highest rate of hydrogen production of 7.19 mmol·g−1·h−1, which was 112.3 and 3.6 times those of Sn3O4 and Zn0.5Cd0.5S, respectively. And the AQY of ZCS/SO-10 for H2 evolution was up to 16.6 % at λ = 420 nm. Moreover, ZCS/SO-10 displayed the highest TCH degradation rate (0.0484 min−1), which were 228.3 and 1.9 times those of Sn3O4 (0.000212 min−1) and Zn0.5Cd0.5S (0.0249 min−1). Such excellent dual-functional photocatalytic performance of ZCS/SO heterostructure could be attributed to the synergistic effect between Sn3O4 and Zn0.5Cd0.5S as well as the formation of heterogenous interfaces with close contacts, which greatly increased specific surface area, enlarged spectral response range, enhanced hydrophilicity and accelerated photogenerated charge transfer, resulting in the improvement of photogenerated charge yield and photoreaction efficiency. Detailed electron transport mechanisms and possible degradation paths of TCH were also proposed. This work provides a feasible strategy for the preparation of transition metal sulfide photocatalysts efficiently utilizing solar energy to realize the production of clean energy and water environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十七发布了新的文献求助10
1秒前
科研通AI2S应助ZSWAA采纳,获得10
2秒前
Elian完成签到,获得积分10
2秒前
威威酱油公司完成签到 ,获得积分10
2秒前
2秒前
2秒前
SCIER完成签到,获得积分10
3秒前
Gavin发布了新的文献求助10
4秒前
科研通AI2S应助zxvcbnm采纳,获得10
4秒前
摆渡人完成签到,获得积分10
4秒前
顺利琦完成签到,获得积分10
5秒前
友好的含雁完成签到,获得积分10
5秒前
syy发布了新的文献求助10
5秒前
5秒前
善学以致用应助淳于如雪采纳,获得10
5秒前
Elian发布了新的文献求助10
5秒前
beyond_xdy完成签到 ,获得积分10
6秒前
7秒前
凶狠的盛男完成签到 ,获得积分10
7秒前
xyj6486完成签到,获得积分10
7秒前
清秋二三完成签到,获得积分10
7秒前
积极冷霜完成签到,获得积分10
8秒前
8秒前
8秒前
小啊刘呀完成签到,获得积分10
8秒前
8秒前
菠菜应助鱼儿爱学习吧采纳,获得200
8秒前
蟋蟀狂舞完成签到,获得积分10
8秒前
haapy完成签到 ,获得积分10
8秒前
活力元龙完成签到 ,获得积分10
9秒前
CuP完成签到,获得积分10
9秒前
俊秀的思山完成签到,获得积分10
9秒前
Orange应助八九采纳,获得10
10秒前
10秒前
chaogeshiren完成签到,获得积分10
10秒前
要减肥的冰姬应助huanhuan采纳,获得10
10秒前
11秒前
sunliying完成签到 ,获得积分10
11秒前
11秒前
Dexter完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134291
求助须知:如何正确求助?哪些是违规求助? 2785137
关于积分的说明 7770495
捐赠科研通 2440760
什么是DOI,文献DOI怎么找? 1297506
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792