Distributed Self-Organizing Control of CAVs Between Multiple Adjacent-Ramps

车头时距 计算机科学 实时计算 智能交通系统 无人机 浮动车数据 模拟 运输工程 交通拥挤 工程类 生物 遗传学
作者
Qinglu Ma,Xinyu Wang,Shu Zhang,Chaoru Lu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 5430-5441 被引量:1
标识
DOI:10.1109/tits.2023.3244185
摘要

Traffic self-organizing is controlled autonomously by rules that rely on adaptation to local variations in traffic state and enable effective coordination of the vehicular traffic at a network level. Combined self-organizing network with intelligent transportation, we proposed a distributed self-organizing method for Connected and Autonomous Vehicles (CAVs), which aimed to improve the efficiency and safety between Multiple Adjacent-Ramps (multi-ARs). To make the mainline formation more stable, the speed of ramp vehicles was adjusted to ensure suitable speed and headway of the mainline formation. In the test, the multi-ARs in the East Ring Interchange on the Inner Ring Express in Chongqing was selected to collect the initial data sample by the drones and fixed-point cameras. Under the respective scenarios of conventional driving and intelligent networks, the Python, SUMO, and TraCI were adopted to run simulations and validate the proposed model. Results showed that our model could keep Time to Conflict (TTC) above 1.4s, reduce the average delay by 34.22%, reduce the lane-changing times by 28.07%, reduce single lane occupancy to 8% and improve average speed by 3.68% of multi-ARs. To verify the applicability of the proposed model, experiments were carried out under different traffic volumes, demonstrating the relevance of the proposed method for medium-to-high-density traffic flows. It can provide a basis for traffic engineers and policymakers to maintain the stable development of the urban expressways and ensure the overall operation quality of the multi-ARs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢快的芹菜完成签到,获得积分10
刚刚
研友_852G6L完成签到,获得积分10
刚刚
Puddingo完成签到,获得积分10
刚刚
认真子默发布了新的文献求助10
刚刚
任三颜发布了新的文献求助30
1秒前
雪白起眸发布了新的文献求助10
1秒前
1秒前
慕青应助LJS采纳,获得10
2秒前
乐乐应助fwch采纳,获得10
2秒前
2秒前
2秒前
加油鸭发布了新的文献求助10
3秒前
李某完成签到 ,获得积分10
3秒前
赘婿应助民族风采纳,获得10
3秒前
薛定谔的小猴子完成签到,获得积分10
3秒前
rayce完成签到,获得积分10
4秒前
迢迢笙箫应助Zzzh采纳,获得10
4秒前
Tyranny完成签到 ,获得积分10
5秒前
葡萄成熟发布了新的文献求助30
5秒前
彭于彦祖举报一路生花求助涉嫌违规
5秒前
5秒前
hyhyhyhy发布了新的文献求助10
5秒前
kai完成签到 ,获得积分10
5秒前
66完成签到,获得积分10
5秒前
思源应助smallsix采纳,获得10
5秒前
7秒前
wwewew完成签到,获得积分10
7秒前
司徒映寒完成签到 ,获得积分20
7秒前
背后的穆完成签到 ,获得积分10
8秒前
L~完成签到,获得积分10
8秒前
wang发布了新的文献求助10
8秒前
小马甲应助qxy采纳,获得20
9秒前
共享精神应助zhangjingchang采纳,获得10
9秒前
10秒前
杨振发布了新的文献求助20
10秒前
12秒前
12秒前
番茄炒蛋完成签到 ,获得积分10
13秒前
小张完成签到,获得积分10
13秒前
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151195
求助须知:如何正确求助?哪些是违规求助? 2802651
关于积分的说明 7849434
捐赠科研通 2460087
什么是DOI,文献DOI怎么找? 1309478
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601760