Distributed Self-Organizing Control of CAVs Between Multiple Adjacent-Ramps

车头时距 计算机科学 实时计算 智能交通系统 无人机 浮动车数据 模拟 运输工程 交通拥挤 工程类 生物 遗传学
作者
Qinglu Ma,Xinyu Wang,Shu Zhang,Chaoru Lu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 5430-5441 被引量:1
标识
DOI:10.1109/tits.2023.3244185
摘要

Traffic self-organizing is controlled autonomously by rules that rely on adaptation to local variations in traffic state and enable effective coordination of the vehicular traffic at a network level. Combined self-organizing network with intelligent transportation, we proposed a distributed self-organizing method for Connected and Autonomous Vehicles (CAVs), which aimed to improve the efficiency and safety between Multiple Adjacent-Ramps (multi-ARs). To make the mainline formation more stable, the speed of ramp vehicles was adjusted to ensure suitable speed and headway of the mainline formation. In the test, the multi-ARs in the East Ring Interchange on the Inner Ring Express in Chongqing was selected to collect the initial data sample by the drones and fixed-point cameras. Under the respective scenarios of conventional driving and intelligent networks, the Python, SUMO, and TraCI were adopted to run simulations and validate the proposed model. Results showed that our model could keep Time to Conflict (TTC) above 1.4s, reduce the average delay by 34.22%, reduce the lane-changing times by 28.07%, reduce single lane occupancy to 8% and improve average speed by 3.68% of multi-ARs. To verify the applicability of the proposed model, experiments were carried out under different traffic volumes, demonstrating the relevance of the proposed method for medium-to-high-density traffic flows. It can provide a basis for traffic engineers and policymakers to maintain the stable development of the urban expressways and ensure the overall operation quality of the multi-ARs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子发布了新的文献求助10
刚刚
斯文败类应助麦苗果果采纳,获得10
2秒前
2秒前
4秒前
xxx完成签到,获得积分10
5秒前
6秒前
文艺花生发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
123完成签到,获得积分10
8秒前
flymove发布了新的文献求助10
9秒前
五山第一院士完成签到,获得积分10
9秒前
10秒前
11秒前
隐形曼青应助酷炫鑫采纳,获得10
11秒前
石语芙发布了新的文献求助10
11秒前
sskaze完成签到 ,获得积分10
13秒前
小南发布了新的文献求助10
15秒前
16秒前
跳跃的问玉完成签到,获得积分20
18秒前
石语芙完成签到,获得积分10
18秒前
拉长的板凳完成签到,获得积分10
22秒前
26秒前
无花果应助小南采纳,获得10
27秒前
CodeCraft应助舒心健柏采纳,获得10
28秒前
journey完成签到 ,获得积分10
29秒前
30秒前
THEO发布了新的文献求助10
33秒前
33秒前
33秒前
沐mu发布了新的文献求助10
34秒前
华仔应助吴啊采纳,获得10
35秒前
zhuzhu发布了新的文献求助30
37秒前
DrMaghrabi完成签到,获得积分10
39秒前
冷静的无颜完成签到,获得积分10
41秒前
42秒前
丘比特应助zhuzhu采纳,获得10
43秒前
NexusExplorer应助hlx采纳,获得10
44秒前
ding应助oceana采纳,获得10
45秒前
45秒前
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844