极化子
有机发光二极管
电致发光
材料科学
激子
二极管
光电子学
重组
纳米技术
凝聚态物理
物理
化学
量子力学
生物化学
图层(电子)
基因
电子
作者
Jae‐Min Kim,Kyung Hyung Lee,Jun Yeob Lee
标识
DOI:10.1002/adma.202209953
摘要
Abstract Direct exploring the electroluminescence (EL) of organic light‐emitting diodes (OLEDs) is a challenge due to the complicated processes of polarons, excitons, and their interactions. This study demonstrated the extraction of the polaron dynamics from transient EL by predicting the recombination coefficient via artificial intelligence, overcoming multivariable kinetics problems. The performance of a machine learning (ML) model trained by various EL decay curves is significantly improved using a novel featurization method and input node optimization, achieving an R 2 value of 0.947. The optimized ML model successfully predicts the recombination coefficients of actual OLEDs based on an exciplex‐forming cohost, enabling the quantitative understanding of the overall polaron behavior under various electrical excitation conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI