Studying Traffic Safety During the Transition Period Between Manual Driving and Autonomous Driving: A Simulation-Based Approach

自动化 运输工程 汽车工程 车辆动力学 工程类 计算机科学 模拟 机械工程
作者
Tasneem Miqdady,Rocío de Oña,Jordi Casas,Juan de Oña
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 6690-6710 被引量:20
标识
DOI:10.1109/tits.2023.3241970
摘要

Connected and Autonomous Vehicles (CAVs) are becoming a reality and are progressively penetrating the markets level by level. CAVs are a promising solution for traffic safety. However, robust studies are needed to explore and assess the expected behavior. This study attempts to evaluate traffic safety resulting from a near-real introduction of CAVs with different levels of automation (from Level 1 to Level 4). The investigation consisted of modeling different CAV levels using Gipps' model, followed by the simulation of nine mixed fleets at a motorway segment. Subsequently, the Surrogate Safety Assessment Model was used for safety analysis. According to the results: (1) the gradual penetration of CAV levels led to a progressive reduction in traffic conflicts, ranging from 18.9% when the penetration of high levels of automation (Level 3 and Level 4 vehicles) is 5%, to 94.1% when all the vehicles on the traffic flow are Level 4; (2) human-driven vehicles and vehicles with low levels of automation (Level 1 and Level 2 vehicles) are more frequently involved in conflicts (as follower vehicles) than vehicles with high automation levels. E.g. human-driven vehicles are involved in conflicts from 8% to 122% more, while vehicles with high automation levels are involved in conflicts from 80% to 18% less than their sharing percentages, respectively, depending on different mixed fleets. This study confirms the theory and conclusions from previous literature that indicate a safety gain due to CAV penetration. Moreover, it provides a broader perspective and support for the introduction of CAVs levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SV关注了科研通微信公众号
刚刚
白蕲完成签到,获得积分10
1秒前
调研昵称发布了新的文献求助20
1秒前
柔弱凡松发布了新的文献求助10
2秒前
yyds完成签到,获得积分10
3秒前
认真子默完成签到,获得积分10
3秒前
3秒前
3秒前
mylian完成签到,获得积分10
3秒前
5秒前
5秒前
SY发布了新的文献求助10
5秒前
可爱小哪吒完成签到,获得积分10
5秒前
斯文败类应助doudou采纳,获得10
6秒前
苹果完成签到,获得积分10
6秒前
6秒前
一颗咸蛋黄完成签到 ,获得积分20
8秒前
打打应助5477采纳,获得10
8秒前
灵巧坤发布了新的文献求助30
8秒前
8秒前
小猴完成签到,获得积分10
9秒前
Raymond应助NANA采纳,获得10
10秒前
Sean完成签到 ,获得积分10
10秒前
10秒前
无情山水发布了新的文献求助10
11秒前
锦纹完成签到,获得积分10
11秒前
南桥发布了新的文献求助10
11秒前
11秒前
伶俐的书白完成签到,获得积分10
12秒前
科研通AI5应助威武诺言采纳,获得10
12秒前
12秒前
LXL完成签到,获得积分10
12秒前
杳鸢应助三金采纳,获得20
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
英俊的铭应助yyj采纳,获得10
13秒前
SV发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762