Development and validation of a practical machine learning model to predict sepsis after liver transplantation

医学 败血症 肝移植 围手术期 接收机工作特性 移植 曲线下面积 外科 内科学
作者
Chaojin Chen,Bingcheng Chen,Jing Yang,Xiaoyue Li,Xiaorong Peng,Yawei Feng,Rongchang Guo,Fengyuan Zou,Shaoli Zhou,Ziqing Hei
出处
期刊:Annals of Medicine [Informa]
卷期号:55 (1): 624-633 被引量:12
标识
DOI:10.1080/07853890.2023.2179104
摘要

Background Postoperative sepsis is one of the main causes of mortality after liver transplantation (LT). Our study aimed to develop and validate a predictive model for postoperative sepsis within 7 d in LT recipients using machine learning (ML) technology.Methods Data of 786 patients received LT from January 2015 to January 2020 was retrospectively extracted from the big data platform of Third Affiliated Hospital of Sun Yat-sen University. Seven ML models were developed to predict postoperative sepsis. The area under the receiver-operating curve (AUC), sensitivity, specificity, accuracy, and f1-score were evaluated as the model performances. The model with the best performance was validated in an independent dataset involving 118 adult LT cases from February 2020 to April 2021. The postoperative sepsis-associated outcomes were also explored in the study.Results After excluding 109 patients according to the exclusion criteria, 677 patients underwent LT were finally included in the analysis. Among them, 216 (31.9%) were diagnosed with sepsis after LT, which were related to more perioperative complications, increased postoperative hospital stay and mortality after LT (all p < .05). Our results revealed that a larger volume of red blood cell infusion, ascitic removal, blood loss and gastric drainage, less volume of crystalloid infusion and urine, longer anesthesia time, higher level of preoperative TBIL were the top 8 important variables contributing to the prediction of post-LT sepsis. The Random Forest Classifier (RF) model showed the best overall performance to predict sepsis after LT among the seven ML models developed in the study, with an AUC of 0.731, an accuracy of 71.6%, the sensitivity of 62.1%, and specificity of 76.1% in the internal validation set, and a comparable AUC of 0.755 in the external validation set.Conclusions Our study enrolled eight pre- and intra-operative variables to develop an RF-based predictive model of post-LT sepsis to assist clinical decision-making procedure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
szong发布了新的文献求助10
1秒前
惊蛰完成签到,获得积分10
1秒前
柚米完成签到,获得积分10
2秒前
ccm应助syy080837采纳,获得10
3秒前
wss完成签到 ,获得积分10
6秒前
美丽女人完成签到 ,获得积分10
6秒前
汉堡包应助Tony12采纳,获得10
8秒前
典雅的夜梦完成签到 ,获得积分10
9秒前
10秒前
sxb10101应助吃瓜群众采纳,获得10
11秒前
不吃香菇完成签到 ,获得积分10
12秒前
秀丽的大门完成签到,获得积分10
13秒前
cinyadane完成签到 ,获得积分10
13秒前
13秒前
拉不不发布了新的文献求助10
15秒前
yuna_yqc发布了新的文献求助10
16秒前
18秒前
曾经山灵发布了新的文献求助10
19秒前
20秒前
浮游应助YY230512采纳,获得10
20秒前
22秒前
25秒前
Jasper应助沉静凡松采纳,获得10
26秒前
zzzzz完成签到,获得积分10
27秒前
27秒前
29秒前
30秒前
DONGN发布了新的文献求助10
30秒前
花花完成签到 ,获得积分10
30秒前
Sakura发布了新的文献求助10
34秒前
agrlook完成签到,获得积分10
34秒前
孙崇翔完成签到,获得积分10
38秒前
38秒前
峰1992完成签到,获得积分10
43秒前
43秒前
c123完成签到 ,获得积分10
44秒前
46秒前
46秒前
47秒前
热情怡发布了新的文献求助10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560834
求助须知:如何正确求助?哪些是违规求助? 4646178
关于积分的说明 14677685
捐赠科研通 4587278
什么是DOI,文献DOI怎么找? 2516949
邀请新用户注册赠送积分活动 1490355
关于科研通互助平台的介绍 1461160