已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a practical machine learning model to predict sepsis after liver transplantation

医学 败血症 肝移植 围手术期 接收机工作特性 移植 曲线下面积 外科 内科学
作者
Chaojin Chen,Bingcheng Chen,Jing Yang,Xiaoyue Li,Xiaorong Peng,Yawei Feng,Rongchang Guo,Fengyuan Zou,Shaoli Zhou,Ziqing Hei
出处
期刊:Annals of Medicine [Informa]
卷期号:55 (1): 624-633 被引量:12
标识
DOI:10.1080/07853890.2023.2179104
摘要

Background Postoperative sepsis is one of the main causes of mortality after liver transplantation (LT). Our study aimed to develop and validate a predictive model for postoperative sepsis within 7 d in LT recipients using machine learning (ML) technology.Methods Data of 786 patients received LT from January 2015 to January 2020 was retrospectively extracted from the big data platform of Third Affiliated Hospital of Sun Yat-sen University. Seven ML models were developed to predict postoperative sepsis. The area under the receiver-operating curve (AUC), sensitivity, specificity, accuracy, and f1-score were evaluated as the model performances. The model with the best performance was validated in an independent dataset involving 118 adult LT cases from February 2020 to April 2021. The postoperative sepsis-associated outcomes were also explored in the study.Results After excluding 109 patients according to the exclusion criteria, 677 patients underwent LT were finally included in the analysis. Among them, 216 (31.9%) were diagnosed with sepsis after LT, which were related to more perioperative complications, increased postoperative hospital stay and mortality after LT (all p < .05). Our results revealed that a larger volume of red blood cell infusion, ascitic removal, blood loss and gastric drainage, less volume of crystalloid infusion and urine, longer anesthesia time, higher level of preoperative TBIL were the top 8 important variables contributing to the prediction of post-LT sepsis. The Random Forest Classifier (RF) model showed the best overall performance to predict sepsis after LT among the seven ML models developed in the study, with an AUC of 0.731, an accuracy of 71.6%, the sensitivity of 62.1%, and specificity of 76.1% in the internal validation set, and a comparable AUC of 0.755 in the external validation set.Conclusions Our study enrolled eight pre- and intra-operative variables to develop an RF-based predictive model of post-LT sepsis to assist clinical decision-making procedure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shangxinyu发布了新的文献求助10
2秒前
gao0505完成签到,获得积分10
2秒前
8秒前
带虾的烧麦完成签到,获得积分10
13秒前
三番发布了新的文献求助10
14秒前
14秒前
shangxinyu完成签到,获得积分20
15秒前
16秒前
山山完成签到 ,获得积分10
16秒前
17秒前
清秀芝麻完成签到 ,获得积分10
19秒前
BowieHuang应助科研通管家采纳,获得10
19秒前
jcl完成签到,获得积分10
20秒前
天天快乐应助palmer采纳,获得10
21秒前
陶陶子发布了新的文献求助10
21秒前
善学以致用应助lin采纳,获得10
22秒前
YJ888发布了新的文献求助10
23秒前
26秒前
冷艳妙柏完成签到,获得积分10
26秒前
28秒前
Emma发布了新的文献求助10
33秒前
风趣的天问完成签到 ,获得积分10
34秒前
34秒前
34秒前
田田发布了新的文献求助10
35秒前
狐金华发布了新的文献求助10
38秒前
38秒前
39秒前
fishss完成签到 ,获得积分0
40秒前
Linos应助糊涂涂采纳,获得10
40秒前
Emma完成签到,获得积分10
43秒前
palmer发布了新的文献求助10
43秒前
tzl发布了新的文献求助30
46秒前
zyj完成签到,获得积分10
47秒前
小马甲应助权翼采纳,获得10
48秒前
LJY完成签到 ,获得积分10
49秒前
54秒前
岚岚完成签到,获得积分10
54秒前
了了完成签到 ,获得积分10
55秒前
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361