Development and validation of a practical machine learning model to predict sepsis after liver transplantation

医学 败血症 肝移植 围手术期 接收机工作特性 移植 曲线下面积 外科 内科学
作者
Chaojin Chen,Bingcheng Chen,Jing Yang,Xiaoyue Li,Xiaorong Peng,Yawei Feng,Rongchang Guo,Fengyuan Zou,Shaoli Zhou,Ziqing Hei
出处
期刊:Annals of Medicine [Informa]
卷期号:55 (1): 624-633 被引量:12
标识
DOI:10.1080/07853890.2023.2179104
摘要

Background Postoperative sepsis is one of the main causes of mortality after liver transplantation (LT). Our study aimed to develop and validate a predictive model for postoperative sepsis within 7 d in LT recipients using machine learning (ML) technology.Methods Data of 786 patients received LT from January 2015 to January 2020 was retrospectively extracted from the big data platform of Third Affiliated Hospital of Sun Yat-sen University. Seven ML models were developed to predict postoperative sepsis. The area under the receiver-operating curve (AUC), sensitivity, specificity, accuracy, and f1-score were evaluated as the model performances. The model with the best performance was validated in an independent dataset involving 118 adult LT cases from February 2020 to April 2021. The postoperative sepsis-associated outcomes were also explored in the study.Results After excluding 109 patients according to the exclusion criteria, 677 patients underwent LT were finally included in the analysis. Among them, 216 (31.9%) were diagnosed with sepsis after LT, which were related to more perioperative complications, increased postoperative hospital stay and mortality after LT (all p < .05). Our results revealed that a larger volume of red blood cell infusion, ascitic removal, blood loss and gastric drainage, less volume of crystalloid infusion and urine, longer anesthesia time, higher level of preoperative TBIL were the top 8 important variables contributing to the prediction of post-LT sepsis. The Random Forest Classifier (RF) model showed the best overall performance to predict sepsis after LT among the seven ML models developed in the study, with an AUC of 0.731, an accuracy of 71.6%, the sensitivity of 62.1%, and specificity of 76.1% in the internal validation set, and a comparable AUC of 0.755 in the external validation set.Conclusions Our study enrolled eight pre- and intra-operative variables to develop an RF-based predictive model of post-LT sepsis to assist clinical decision-making procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋浩奇发布了新的文献求助10
刚刚
iNk应助欧皇采纳,获得10
刚刚
刚刚
刚刚
Tyler发布了新的文献求助10
2秒前
2秒前
科研通AI6应助sifLiu采纳,获得10
2秒前
2秒前
害羞彩虹完成签到,获得积分20
3秒前
没有名称完成签到,获得积分10
3秒前
3秒前
王康完成签到,获得积分10
4秒前
4秒前
冷傲迎梦发布了新的文献求助10
5秒前
搜集达人应助111版采纳,获得10
7秒前
wanwusheng完成签到,获得积分10
9秒前
WUJIAYU完成签到,获得积分10
10秒前
12秒前
suger完成签到,获得积分10
13秒前
16秒前
蔺蔺发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
Yu完成签到,获得积分20
19秒前
废寝忘食发布了新的文献求助10
20秒前
liliuuuuuuuu发布了新的文献求助10
22秒前
ybheart发布了新的文献求助10
23秒前
孙敬涵完成签到,获得积分10
23秒前
Tengami完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
宽宽完成签到,获得积分10
26秒前
李健应助小付采纳,获得10
27秒前
suger发布了新的文献求助10
27秒前
ahh完成签到 ,获得积分10
28秒前
小虾米完成签到,获得积分10
28秒前
小唐完成签到 ,获得积分10
31秒前
科研通AI6应助WZ采纳,获得10
33秒前
顾己发布了新的文献求助10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415118
求助须知:如何正确求助?哪些是违规求助? 4531802
关于积分的说明 14130408
捐赠科研通 4447300
什么是DOI,文献DOI怎么找? 2439655
邀请新用户注册赠送积分活动 1431765
关于科研通互助平台的介绍 1409365