Knowledge-Preserving continual person re-identification using Graph Attention Network

计算机科学 人工智能 遗忘 机器学习 领域知识 水准点(测量) 一般化 鉴定(生物学) 图形 深度学习 过程(计算) 理论计算机科学 操作系统 地理 哲学 数学分析 生物 植物 语言学 数学 大地测量学
作者
Zhaoshuo Liu,Chaolu Feng,Shuaizheng Chen,Jun Hu
出处
期刊:Neural Networks [Elsevier]
卷期号:161: 105-115
标识
DOI:10.1016/j.neunet.2023.01.033
摘要

Person re-identification (ReID), considered as a sub-problem of image retrieval, is critical for intelligent security. The general practice is to train a deep model on images from a particular scenario (also known as a domain) and perform retrieval tests on images from the same domain. Thus, the model has to be retrained to ensure good performance on unseen domains. Unfortunately, retraining will introduce the so called catastrophic forgetting problem existing in deep learning models. To address this problem, we propose a Continual person re-identification model via a Knowledge-Preserving (CKP) mechanism. The proposed model is able to accumulate knowledge from continuously changing scenarios. The knowledge is updated via a graph attention network from the human cognitive-inspired perspective as the scenario changes. The accumulated knowledge is used to guide the learning process of the proposed model on image samples from new-coming domains. We finally evaluate and compare CKP with fine-tuning, continual learning in image classification and person re-identification, and joint training. Experiments on representative benchmark datasets (Market1501, DukeMTMC, CUHK03, CUHK-SYSU, and MSMT17, which arrive in different orders) demonstrate the advantages of the proposed model in preventing forgetting, and experiments on other benchmark datasets (GRID, SenseReID, CUHK01, CUHK02, VIPER, iLIDS, and PRID, which are not available during training) demonstrate the generalization ability of the proposed model. The CKP outperforms the best comparative model by 0.58% and 0.65% on seen domains (datasets available during training), and by 0.95% and 1.02% on never seen domains (datasets not available during training) in terms of mAP and Rank1, respectively. Arrival order of the training datasets, guidance of accumulated knowledge for learning new knowledge and parameter settings are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
1秒前
研友_GZbzoZ发布了新的文献求助10
1秒前
1秒前
零度沸腾完成签到 ,获得积分10
3秒前
不安云朵应助雪sung采纳,获得10
4秒前
江竹兰发布了新的文献求助30
4秒前
完美世界应助禾叶采纳,获得10
5秒前
梁晓玲发布了新的文献求助50
5秒前
YIMI完成签到,获得积分10
6秒前
乳酸菌小面包完成签到,获得积分10
6秒前
7秒前
8秒前
辛勤的马楼完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
茜文完成签到,获得积分10
11秒前
垃圾桶发布了新的文献求助10
11秒前
12秒前
刘小胖发布了新的文献求助10
12秒前
niko发布了新的文献求助10
13秒前
13秒前
FIN给11111的求助进行了留言
14秒前
14秒前
14秒前
15秒前
15秒前
WuFen发布了新的文献求助10
16秒前
阳光正好发布了新的文献求助10
18秒前
小冰完成签到,获得积分20
21秒前
田様应助leomei采纳,获得10
21秒前
22秒前
善学以致用应助流星采纳,获得10
23秒前
26秒前
27秒前
bkagyin应助HaHa007采纳,获得10
27秒前
FashionBoy应助清脆的孤菱采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455209
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021471
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502452
科研通“疑难数据库(出版商)”最低求助积分说明 694529
邀请新用户注册赠送积分活动 693302