High-performance prediction models for prostate cancer radiomics

计算机科学 机器学习 人工智能 无线电技术 梯度升压 深度学习 预测建模 Boosting(机器学习) 卷积神经网络 前列腺癌 多任务学习 癌症 医学 随机森林 任务(项目管理) 经济 管理 内科学
作者
Lars Johannes Isaksson,Marco Repetto,Paul Summers,Matteo Pepa,Mattia Zaffaroni,Maria Giulia Vincini,Giulia Corrao,Giovanni Mazzola,Marco Rotondi,Federica Bellerba,Sara Raimondi,Zaharudin Haron,Sarah Alessi,Paula Pricolo,Francesco A. Mistretta,Stefano Luzzago,Federica Cattani,Gennaro Musi,Ottavio De Cobelli,Marta Cremonesi,Roberto Orecchia,Davide La Torre,Giulia Marvaso,Giuseppe Petralia,Barbara Alicja Jereczek‐Fossa
出处
期刊:Informatics in Medicine Unlocked [Elsevier]
卷期号:37: 101161-101161 被引量:8
标识
DOI:10.1016/j.imu.2023.101161
摘要

When researchers are faced with building machine learning (ML) radiomic models, the first choice they have to make is what model to use. Naturally, the goal is to use the model with the best performance. But what is the best model? It is well known in ML that modern techniques such as gradient boosting and deep learning have better capacity than traditional models to solve complex problems in high dimensions. Despite this, most radiomics researchers still do not focus on these models in their research. As access to high-quality and large data sets increase, these high-capacity ML models may become even more relevant. In this article, we use a large dataset of 949 prostate cancer patients to compare the performance of a few of the most promising ML models for tabular data: gradient-boosted decision trees (GBDTs), multilayer perceptions, convolutional neural networks, and transformers. To this end, we predict nine different prostate cancer pathology outcomes of clinical interest. Our goal is to give a rough overview of how these models compare against one another in a typical radiomics setting. We also investigate if multitask learning improves the performance of these models when multiple targets are available. Our results suggest that GBDTs perform well across all targets, and that multitask learning does not provide a consistent improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Junly发布了新的文献求助10
刚刚
刚刚
Jasper应助难过的谷芹采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
null应助科研通管家采纳,获得10
1秒前
俊逸忻应助科研通管家采纳,获得10
1秒前
CodeCraft应助沈世尧采纳,获得10
1秒前
MIZU应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
无极微光应助超级的冷松采纳,获得20
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
吃瓜少女应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得30
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
null应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
null应助科研通管家采纳,获得10
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
俊逸忻应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6.1应助11采纳,获得10
3秒前
MIZU应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108