High-performance prediction models for prostate cancer radiomics

计算机科学 机器学习 人工智能 无线电技术 梯度升压 深度学习 预测建模 Boosting(机器学习) 卷积神经网络 前列腺癌 多任务学习 癌症 医学 随机森林 任务(项目管理) 经济 管理 内科学
作者
Lars Johannes Isaksson,Marco Repetto,Paul Summers,Matteo Pepa,Mattia Zaffaroni,Maria Giulia Vincini,Giulia Corrao,Giovanni Mazzola,Marco Rotondi,Federica Bellerba,Sara Raimondi,Zaharudin Haron,Sarah Alessi,Paula Pricolo,Francesco A. Mistretta,Stefano Luzzago,Federica Cattani,Gennaro Musi,Ottavio De Cobelli,Marta Cremonesi,Roberto Orecchia,Davide La Torre,Giulia Marvaso,Giuseppe Petralia,Barbara Alicja Jereczek‐Fossa
出处
期刊:Informatics in Medicine Unlocked [Elsevier]
卷期号:37: 101161-101161 被引量:8
标识
DOI:10.1016/j.imu.2023.101161
摘要

When researchers are faced with building machine learning (ML) radiomic models, the first choice they have to make is what model to use. Naturally, the goal is to use the model with the best performance. But what is the best model? It is well known in ML that modern techniques such as gradient boosting and deep learning have better capacity than traditional models to solve complex problems in high dimensions. Despite this, most radiomics researchers still do not focus on these models in their research. As access to high-quality and large data sets increase, these high-capacity ML models may become even more relevant. In this article, we use a large dataset of 949 prostate cancer patients to compare the performance of a few of the most promising ML models for tabular data: gradient-boosted decision trees (GBDTs), multilayer perceptions, convolutional neural networks, and transformers. To this end, we predict nine different prostate cancer pathology outcomes of clinical interest. Our goal is to give a rough overview of how these models compare against one another in a typical radiomics setting. We also investigate if multitask learning improves the performance of these models when multiple targets are available. Our results suggest that GBDTs perform well across all targets, and that multitask learning does not provide a consistent improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助科研通管家采纳,获得10
刚刚
非而者厚应助科研通管家采纳,获得10
刚刚
非而者厚应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
非而者厚应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得50
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
非而者厚应助科研通管家采纳,获得10
2秒前
自信晓旋完成签到,获得积分10
2秒前
2秒前
非而者厚应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
wlscj应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
2秒前
非而者厚应助科研通管家采纳,获得10
2秒前
俊秀的半雪完成签到,获得积分10
3秒前
zahngyacheng发布了新的文献求助10
4秒前
ltt完成签到,获得积分10
4秒前
sun发布了新的文献求助10
4秒前
自觉紫安发布了新的文献求助10
5秒前
5秒前
5秒前
研友_R2D2完成签到,获得积分10
7秒前
konya发布了新的文献求助10
8秒前
吴念完成签到,获得积分10
8秒前
MMM完成签到,获得积分10
9秒前
皮凡发布了新的文献求助10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930