High-performance prediction models for prostate cancer radiomics

计算机科学 机器学习 人工智能 无线电技术 梯度升压 深度学习 预测建模 Boosting(机器学习) 卷积神经网络 前列腺癌 多任务学习 癌症 医学 随机森林 任务(项目管理) 内科学 管理 经济
作者
Lars Johannes Isaksson,Marco Repetto,Paul Summers,Matteo Pepa,Mattia Zaffaroni,Maria Giulia Vincini,Giulia Corrao,Giovanni Mazzola,Marco Rotondi,Federica Bellerba,Sara Raimondi,Zaharudin Haron,Sarah Alessi,Paula Pricolo,Francesco A. Mistretta,Stefano Luzzago,Federica Cattani,Gennaro Musi,Ottavio De Cobelli,Marta Cremonesi,Roberto Orecchia,Davide La Torre,Giulia Marvaso,Giuseppe Petralia,Barbara Alicja Jereczek‐Fossa
出处
期刊:Informatics in Medicine Unlocked [Elsevier]
卷期号:37: 101161-101161 被引量:8
标识
DOI:10.1016/j.imu.2023.101161
摘要

When researchers are faced with building machine learning (ML) radiomic models, the first choice they have to make is what model to use. Naturally, the goal is to use the model with the best performance. But what is the best model? It is well known in ML that modern techniques such as gradient boosting and deep learning have better capacity than traditional models to solve complex problems in high dimensions. Despite this, most radiomics researchers still do not focus on these models in their research. As access to high-quality and large data sets increase, these high-capacity ML models may become even more relevant. In this article, we use a large dataset of 949 prostate cancer patients to compare the performance of a few of the most promising ML models for tabular data: gradient-boosted decision trees (GBDTs), multilayer perceptions, convolutional neural networks, and transformers. To this end, we predict nine different prostate cancer pathology outcomes of clinical interest. Our goal is to give a rough overview of how these models compare against one another in a typical radiomics setting. We also investigate if multitask learning improves the performance of these models when multiple targets are available. Our results suggest that GBDTs perform well across all targets, and that multitask learning does not provide a consistent improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助飞鹰girl采纳,获得10
刚刚
从容的玉米完成签到 ,获得积分10
2秒前
2秒前
下一秒的王发布了新的文献求助850
3秒前
阿瓜发布了新的文献求助10
4秒前
4秒前
HR112应助juan采纳,获得10
5秒前
ryeong发布了新的文献求助10
6秒前
小小完成签到 ,获得积分10
7秒前
7秒前
dll完成签到 ,获得积分10
8秒前
Very发布了新的文献求助10
8秒前
8秒前
jmy发布了新的文献求助10
9秒前
不安青牛应助Zjin宇采纳,获得10
9秒前
忐忑的安蕾完成签到,获得积分10
10秒前
科研通AI2S应助ryeong采纳,获得10
10秒前
大模型应助ryeong采纳,获得10
10秒前
汉堡包应助洞悉采纳,获得10
11秒前
Yanjun发布了新的文献求助10
11秒前
HR112应助Kristin采纳,获得10
11秒前
12秒前
12秒前
CodeCraft应助丽晶洁愿采纳,获得10
13秒前
livrese完成签到,获得积分10
14秒前
15秒前
Gavin发布了新的文献求助10
15秒前
ding应助jmy采纳,获得10
18秒前
我爱螺蛳粉完成签到 ,获得积分10
18秒前
18秒前
葉落葉飄发布了新的文献求助10
20秒前
烟花应助花花采纳,获得10
20秒前
栋宝发布了新的文献求助10
21秒前
23秒前
斯文败类应助故意的可愁采纳,获得10
24秒前
清水发布了新的文献求助30
24秒前
25秒前
25秒前
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161657
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897803
捐赠科研通 2471830
什么是DOI,文献DOI怎么找? 1316176
科研通“疑难数据库(出版商)”最低求助积分说明 631245
版权声明 602129