High-performance prediction models for prostate cancer radiomics

计算机科学 机器学习 人工智能 无线电技术 梯度升压 深度学习 预测建模 Boosting(机器学习) 卷积神经网络 前列腺癌 多任务学习 癌症 医学 随机森林 任务(项目管理) 经济 管理 内科学
作者
Lars Johannes Isaksson,Marco Repetto,Paul Summers,Matteo Pepa,Mattia Zaffaroni,Maria Giulia Vincini,Giulia Corrao,Giovanni Mazzola,Marco Rotondi,Federica Bellerba,Sara Raimondi,Zaharudin Haron,Sarah Alessi,Paula Pricolo,Francesco A. Mistretta,Stefano Luzzago,Federica Cattani,Gennaro Musi,Ottavio De Cobelli,Marta Cremonesi,Roberto Orecchia,Davide La Torre,Giulia Marvaso,Giuseppe Petralia,Barbara Alicja Jereczek‐Fossa
出处
期刊:Informatics in Medicine Unlocked [Elsevier]
卷期号:37: 101161-101161 被引量:8
标识
DOI:10.1016/j.imu.2023.101161
摘要

When researchers are faced with building machine learning (ML) radiomic models, the first choice they have to make is what model to use. Naturally, the goal is to use the model with the best performance. But what is the best model? It is well known in ML that modern techniques such as gradient boosting and deep learning have better capacity than traditional models to solve complex problems in high dimensions. Despite this, most radiomics researchers still do not focus on these models in their research. As access to high-quality and large data sets increase, these high-capacity ML models may become even more relevant. In this article, we use a large dataset of 949 prostate cancer patients to compare the performance of a few of the most promising ML models for tabular data: gradient-boosted decision trees (GBDTs), multilayer perceptions, convolutional neural networks, and transformers. To this end, we predict nine different prostate cancer pathology outcomes of clinical interest. Our goal is to give a rough overview of how these models compare against one another in a typical radiomics setting. We also investigate if multitask learning improves the performance of these models when multiple targets are available. Our results suggest that GBDTs perform well across all targets, and that multitask learning does not provide a consistent improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
2秒前
威武的莫茗应助周一一采纳,获得10
2秒前
pluto应助青年才俊采纳,获得10
2秒前
科研通AI6应助青年才俊采纳,获得10
2秒前
桐桐应助青年才俊采纳,获得10
2秒前
Akim应助青年才俊采纳,获得10
2秒前
FashionBoy应助青年才俊采纳,获得10
2秒前
3秒前
shadinganchun发布了新的文献求助10
3秒前
5秒前
cyyyy完成签到,获得积分10
5秒前
汤圆完成签到,获得积分10
6秒前
Ff完成签到 ,获得积分10
6秒前
huhdcid发布了新的文献求助10
7秒前
Jasper应助罗九九采纳,获得10
9秒前
10秒前
10秒前
11秒前
远古遗迹完成签到,获得积分10
12秒前
12秒前
摆烂完成签到 ,获得积分10
13秒前
酷波er应助nate采纳,获得10
14秒前
八个脑袋发布了新的文献求助10
14秒前
六六完成签到 ,获得积分10
15秒前
15秒前
16秒前
musicyy222发布了新的文献求助10
16秒前
bcl发布了新的文献求助10
17秒前
19秒前
20秒前
20秒前
府中园马发布了新的文献求助10
20秒前
shadinganchun完成签到,获得积分10
20秒前
Agoni完成签到,获得积分10
20秒前
20秒前
21秒前
22秒前
领导范儿应助如沐春风的采纳,获得10
23秒前
科研通AI6应助zzhh采纳,获得30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533498
求助须知:如何正确求助?哪些是违规求助? 4621711
关于积分的说明 14580035
捐赠科研通 4561794
什么是DOI,文献DOI怎么找? 2499622
邀请新用户注册赠送积分活动 1479350
关于科研通互助平台的介绍 1450588