Transformer-Based Imitative Reinforcement Learning for Multirobot Path Planning

强化学习 计算机科学 机器人 运动规划 变压器 人工智能 模仿 人工神经网络 移动机器人 路径(计算) 分布式计算 工程类 计算机网络 电压 社会心理学 电气工程 心理学
作者
Lin Chen,Yaonan Wang,Zhiqiang Miao,Yang Mo,Mingtao Feng,Zhen Zhou,Hesheng Wang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (10): 10233-10243 被引量:33
标识
DOI:10.1109/tii.2023.3240585
摘要

Multirobot path planning leads multiple robots from start positions to designated goal positions by generating efficient and collision-free paths. Multirobot systems realize coordination solutions and decentralized path planning, which is essential for large-scale systems. The state-of-the-art decentralized methods utilize imitation learning and reinforcement learning methods to teach fully decentralized policies, dramatically improving their performance. However, these methods cannot enable robots to perform tasks efficiently in relatively dense environments without communication between robots. We introduce the transformer structure into policy neural networks for the first time, dramatically enhancing the ability of policy neural networks to extract features that facilitate collaboration between robots. It mainly focuses on improving the performance of policies in relatively dense multirobot environments under conditions where robots do not communicate with each other. Furthermore, a novel imitation reinforcement learning framework is proposed by combining contrastive learning and double deep Q-network to solve the problem of difficulty training policy neural networks after introducing the transformer structure. We present results in the simulation environment and compare the resulting policy against advanced multirobot path-planning methods in terms of success rate. Simulation results show that our policy achieves state-of-the-art performance when there is no communication between robots. Finally, we experimented with a real-world case using a total of three robots in our robotic laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助PP采纳,获得10
1秒前
1秒前
Wongradona发布了新的文献求助10
1秒前
2秒前
英吉利25发布了新的文献求助20
2秒前
FashionBoy应助Slyvia2025采纳,获得10
3秒前
FashionBoy应助善良曼寒采纳,获得30
3秒前
3秒前
壮观的擎发布了新的文献求助10
5秒前
听话的幼蓉完成签到,获得积分20
5秒前
现在拨打发布了新的文献求助10
5秒前
孜然味的拜拜肉完成签到,获得积分10
5秒前
5秒前
大梦想家发布了新的文献求助10
6秒前
1111111完成签到,获得积分10
7秒前
9秒前
spiritpope发布了新的文献求助10
10秒前
鸡狗不如完成签到,获得积分10
11秒前
11秒前
白鲜香精发布了新的文献求助10
16秒前
1793480753完成签到 ,获得积分10
16秒前
zhuwenjian发布了新的文献求助10
17秒前
17秒前
大马哈鱼发布了新的文献求助10
19秒前
朴素的映冬完成签到,获得积分10
19秒前
21秒前
22秒前
123_完成签到,获得积分20
23秒前
天天快乐应助zjh采纳,获得10
25秒前
善良曼寒发布了新的文献求助30
26秒前
mouxq发布了新的文献求助10
27秒前
27秒前
KM比比发布了新的文献求助30
28秒前
善学以致用应助ta采纳,获得10
28秒前
29秒前
31秒前
zyy发布了新的文献求助10
32秒前
1111111发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
34秒前
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959614
求助须知:如何正确求助?哪些是违规求助? 3505862
关于积分的说明 11126541
捐赠科研通 3237790
什么是DOI,文献DOI怎么找? 1789380
邀请新用户注册赠送积分活动 871688
科研通“疑难数据库(出版商)”最低求助积分说明 802963