Transformer-Based Imitative Reinforcement Learning for Multirobot Path Planning

强化学习 计算机科学 机器人 运动规划 变压器 人工智能 模仿 人工神经网络 移动机器人 路径(计算) 分布式计算 工程类 计算机网络 电压 社会心理学 电气工程 心理学
作者
Lin Chen,Yaonan Wang,Zhiqiang Miao,Yang Mo,Mingtao Feng,Zhen Zhou,Hesheng Wang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (10): 10233-10243 被引量:27
标识
DOI:10.1109/tii.2023.3240585
摘要

Multirobot path planning leads multiple robots from start positions to designated goal positions by generating efficient and collision-free paths. Multirobot systems realize coordination solutions and decentralized path planning, which is essential for large-scale systems. The state-of-the-art decentralized methods utilize imitation learning and reinforcement learning methods to teach fully decentralized policies, dramatically improving their performance. However, these methods cannot enable robots to perform tasks efficiently in relatively dense environments without communication between robots. We introduce the transformer structure into policy neural networks for the first time, dramatically enhancing the ability of policy neural networks to extract features that facilitate collaboration between robots. It mainly focuses on improving the performance of policies in relatively dense multirobot environments under conditions where robots do not communicate with each other. Furthermore, a novel imitation reinforcement learning framework is proposed by combining contrastive learning and double deep Q-network to solve the problem of difficulty training policy neural networks after introducing the transformer structure. We present results in the simulation environment and compare the resulting policy against advanced multirobot path-planning methods in terms of success rate. Simulation results show that our policy achieves state-of-the-art performance when there is no communication between robots. Finally, we experimented with a real-world case using a total of three robots in our robotic laboratory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助..采纳,获得10
2秒前
5秒前
7秒前
8秒前
万海完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
英俊的铭应助奥特曼采纳,获得10
9秒前
刘夫人发布了新的文献求助10
10秒前
11秒前
jiajia发布了新的文献求助10
11秒前
南栀发布了新的文献求助10
12秒前
咖啡蓝图完成签到,获得积分10
12秒前
YOLK97发布了新的文献求助10
12秒前
Akim应助YY采纳,获得10
13秒前
13秒前
13秒前
Deduta发布了新的文献求助10
15秒前
15秒前
16秒前
科研通AI5应助辉hui采纳,获得10
17秒前
wangbw完成签到,获得积分10
17秒前
17秒前
17秒前
安全123完成签到,获得积分20
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
刘蕾完成签到,获得积分10
19秒前
陈民发布了新的文献求助10
20秒前
ZCQ完成签到,获得积分10
20秒前
英俊的铭应助小薛采纳,获得10
20秒前
AAA完成签到,获得积分10
20秒前
..发布了新的文献求助10
21秒前
Orange应助刘夫人采纳,获得10
21秒前
22秒前
unqiue发布了新的文献求助10
22秒前
安全123发布了新的文献求助30
23秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666163
求助须知:如何正确求助?哪些是违规求助? 3225175
关于积分的说明 9761817
捐赠科研通 2935171
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759187
科研通“疑难数据库(出版商)”最低求助积分说明 735153