Event-Based Switching Iterative Learning Model Predictive Control for Batch Processes With Randomly Varying Trial Lengths

计算机科学 趋同(经济学) 迭代学习控制 事件(粒子物理) 模型预测控制 过程(计算) 控制理论(社会学) 人工神经网络 机器学习 控制(管理) 人工智能 算法 经济增长 量子力学 操作系统 物理 经济
作者
Lele Ma,Xiangjie Liu,Furong Gao,Kwang Y. Lee
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (12): 7881-7894 被引量:3
标识
DOI:10.1109/tcyb.2023.3234630
摘要

Iterative learning model predictive control (ILMPC) has been recognized as an excellent batch process control strategy for progressively improving tracking performance along trials. However, as a typical learning-based control method, ILMPC generally requires the strict identity of trial lengths to implement 2-D receding horizon optimization. The randomly varying trial lengths extensively existing in practice can result in the insufficiency of learning prior information, and even the suspension of control update. Regarding this issue, this article embeds a novel prediction-based modification mechanism into ILMPC, to adjust the process data of each trial into the same length by compensating the data of absent running periods with the predictive sequences at the end point. Under this modification scheme, it is proved that the convergence of the classical ILMPC is guaranteed by an inequality condition relative with the probability distribution of trial lengths. Considering the practical batch process with complex nonlinearity, a 2-D neural-network predictive model with parameter adaptability along trials is established to generate highly matched compensation data for the prediction-based modification. To best utilize the real process information of multiple past trials while guaranteeing the learning priority of the latest trials, an event-based switching learning structure is proposed in ILMPC to determine different learning orders according to the probability event with respect to the trial length variation direction. The convergence of the nonlinear event-based switching ILMPC system is analyzed theoretically under two situations divided by the switching condition. The simulations on a numerical example and the injection molding process verify the superiority of the proposed control methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺仔发布了新的文献求助10
刚刚
阔达的夏云完成签到,获得积分10
1秒前
1秒前
licheng完成签到,获得积分10
1秒前
怕孤独的安萱完成签到 ,获得积分20
2秒前
3秒前
春晓发布了新的文献求助10
3秒前
金金金完成签到,获得积分10
3秒前
3秒前
呆萌的豌豆完成签到,获得积分10
4秒前
Pretrial完成签到 ,获得积分10
4秒前
style_fire发布了新的文献求助10
4秒前
文瑄完成签到 ,获得积分10
4秒前
白开水完成签到,获得积分10
4秒前
5秒前
酷波er应助任性蘑菇采纳,获得10
5秒前
祁尒完成签到,获得积分10
6秒前
帆320发布了新的文献求助10
6秒前
俭朴的醉香完成签到,获得积分10
6秒前
旺仔完成签到,获得积分10
6秒前
共享精神应助wuqi采纳,获得30
7秒前
yqcsysu完成签到 ,获得积分10
7秒前
蓝桉完成签到 ,获得积分10
7秒前
7秒前
7秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
8秒前
Owen应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得20
8秒前
情怀应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得30
8秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134355
求助须知:如何正确求助?哪些是违规求助? 2785254
关于积分的说明 7770963
捐赠科研通 2440904
什么是DOI,文献DOI怎么找? 1297556
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792