Event-Based Switching Iterative Learning Model Predictive Control for Batch Processes With Randomly Varying Trial Lengths

计算机科学 趋同(经济学) 迭代学习控制 事件(粒子物理) 模型预测控制 过程(计算) 控制理论(社会学) 人工神经网络 机器学习 控制(管理) 人工智能 算法 经济增长 量子力学 操作系统 物理 经济
作者
Lele Ma,Xiangjie Liu,Furong Gao,Kwang Y. Lee
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (12): 7881-7894 被引量:3
标识
DOI:10.1109/tcyb.2023.3234630
摘要

Iterative learning model predictive control (ILMPC) has been recognized as an excellent batch process control strategy for progressively improving tracking performance along trials. However, as a typical learning-based control method, ILMPC generally requires the strict identity of trial lengths to implement 2-D receding horizon optimization. The randomly varying trial lengths extensively existing in practice can result in the insufficiency of learning prior information, and even the suspension of control update. Regarding this issue, this article embeds a novel prediction-based modification mechanism into ILMPC, to adjust the process data of each trial into the same length by compensating the data of absent running periods with the predictive sequences at the end point. Under this modification scheme, it is proved that the convergence of the classical ILMPC is guaranteed by an inequality condition relative with the probability distribution of trial lengths. Considering the practical batch process with complex nonlinearity, a 2-D neural-network predictive model with parameter adaptability along trials is established to generate highly matched compensation data for the prediction-based modification. To best utilize the real process information of multiple past trials while guaranteeing the learning priority of the latest trials, an event-based switching learning structure is proposed in ILMPC to determine different learning orders according to the probability event with respect to the trial length variation direction. The convergence of the nonlinear event-based switching ILMPC system is analyzed theoretically under two situations divided by the switching condition. The simulations on a numerical example and the injection molding process verify the superiority of the proposed control methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
像棉花糖的云完成签到 ,获得积分10
刚刚
Weiweiweixiao完成签到,获得积分10
刚刚
Arsenc完成签到,获得积分20
1秒前
wsf完成签到,获得积分20
1秒前
思源应助典雅问寒采纳,获得10
1秒前
2秒前
饱满凡灵完成签到,获得积分10
3秒前
3秒前
酷波er应助hhllhh采纳,获得10
4秒前
SophiaMX发布了新的文献求助10
4秒前
慕青应助ashley采纳,获得10
6秒前
大模型应助陈七采纳,获得10
6秒前
orixero应助珝潏采纳,获得10
6秒前
852应助肥波采纳,获得10
7秒前
Wang发布了新的文献求助10
7秒前
阿拉丁完成签到,获得积分10
8秒前
852应助xiaowei666采纳,获得30
8秒前
Akim应助李昕123采纳,获得10
8秒前
研友_VZG7GZ应助外向铃铛采纳,获得10
10秒前
爆米花应助xinlinwang采纳,获得10
10秒前
11秒前
12秒前
13秒前
14秒前
15秒前
15秒前
阿拉丁发布了新的文献求助10
16秒前
16秒前
浮游应助一只酸牛牛采纳,获得10
16秒前
17秒前
SiqiZhang发布了新的文献求助10
18秒前
one发布了新的文献求助10
18秒前
喵喵子发布了新的文献求助10
19秒前
丘比特应助cjf采纳,获得10
19秒前
19秒前
19秒前
x夏天发布了新的文献求助10
19秒前
周肆完成签到,获得积分10
19秒前
hhllhh发布了新的文献求助10
19秒前
典雅问寒发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541