Event-Based Switching Iterative Learning Model Predictive Control for Batch Processes With Randomly Varying Trial Lengths

计算机科学 趋同(经济学) 迭代学习控制 事件(粒子物理) 模型预测控制 过程(计算) 控制理论(社会学) 人工神经网络 机器学习 控制(管理) 人工智能 算法 经济增长 量子力学 操作系统 物理 经济
作者
Lele Ma,Xiangjie Liu,Furong Gao,Kwang Y. Lee
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (12): 7881-7894 被引量:3
标识
DOI:10.1109/tcyb.2023.3234630
摘要

Iterative learning model predictive control (ILMPC) has been recognized as an excellent batch process control strategy for progressively improving tracking performance along trials. However, as a typical learning-based control method, ILMPC generally requires the strict identity of trial lengths to implement 2-D receding horizon optimization. The randomly varying trial lengths extensively existing in practice can result in the insufficiency of learning prior information, and even the suspension of control update. Regarding this issue, this article embeds a novel prediction-based modification mechanism into ILMPC, to adjust the process data of each trial into the same length by compensating the data of absent running periods with the predictive sequences at the end point. Under this modification scheme, it is proved that the convergence of the classical ILMPC is guaranteed by an inequality condition relative with the probability distribution of trial lengths. Considering the practical batch process with complex nonlinearity, a 2-D neural-network predictive model with parameter adaptability along trials is established to generate highly matched compensation data for the prediction-based modification. To best utilize the real process information of multiple past trials while guaranteeing the learning priority of the latest trials, an event-based switching learning structure is proposed in ILMPC to determine different learning orders according to the probability event with respect to the trial length variation direction. The convergence of the nonlinear event-based switching ILMPC system is analyzed theoretically under two situations divided by the switching condition. The simulations on a numerical example and the injection molding process verify the superiority of the proposed control methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助冰冰采纳,获得10
1秒前
孤独的心锁完成签到,获得积分10
2秒前
2秒前
科研式发布了新的文献求助10
2秒前
邱球球发布了新的文献求助10
2秒前
3秒前
Ava应助YYY666采纳,获得10
3秒前
wlscj应助甘sir采纳,获得20
4秒前
5秒前
酷酷的安柏完成签到 ,获得积分10
5秒前
天天快乐应助林钰浩采纳,获得10
5秒前
SQ完成签到,获得积分20
7秒前
顺利白竹发布了新的文献求助10
7秒前
diu应助炙热晓露采纳,获得30
7秒前
领导范儿应助小情思绪采纳,获得10
7秒前
8秒前
2025211022发布了新的文献求助30
9秒前
a.........发布了新的文献求助10
10秒前
ForestEcho发布了新的文献求助10
11秒前
11秒前
华仔应助ENIX采纳,获得10
11秒前
DL应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
黄cc应助flysky120采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得30
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354035
求助须知:如何正确求助?哪些是违规求助? 4486507
关于积分的说明 13966675
捐赠科研通 4386923
什么是DOI,文献DOI怎么找? 2410096
邀请新用户注册赠送积分活动 1402435
关于科研通互助平台的介绍 1376249