Event-Based Switching Iterative Learning Model Predictive Control for Batch Processes With Randomly Varying Trial Lengths

计算机科学 趋同(经济学) 迭代学习控制 事件(粒子物理) 模型预测控制 过程(计算) 控制理论(社会学) 人工神经网络 机器学习 控制(管理) 人工智能 算法 经济增长 量子力学 操作系统 物理 经济
作者
Lele Ma,Xiangjie Liu,Furong Gao,Kwang Y. Lee
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (12): 7881-7894 被引量:3
标识
DOI:10.1109/tcyb.2023.3234630
摘要

Iterative learning model predictive control (ILMPC) has been recognized as an excellent batch process control strategy for progressively improving tracking performance along trials. However, as a typical learning-based control method, ILMPC generally requires the strict identity of trial lengths to implement 2-D receding horizon optimization. The randomly varying trial lengths extensively existing in practice can result in the insufficiency of learning prior information, and even the suspension of control update. Regarding this issue, this article embeds a novel prediction-based modification mechanism into ILMPC, to adjust the process data of each trial into the same length by compensating the data of absent running periods with the predictive sequences at the end point. Under this modification scheme, it is proved that the convergence of the classical ILMPC is guaranteed by an inequality condition relative with the probability distribution of trial lengths. Considering the practical batch process with complex nonlinearity, a 2-D neural-network predictive model with parameter adaptability along trials is established to generate highly matched compensation data for the prediction-based modification. To best utilize the real process information of multiple past trials while guaranteeing the learning priority of the latest trials, an event-based switching learning structure is proposed in ILMPC to determine different learning orders according to the probability event with respect to the trial length variation direction. The convergence of the nonlinear event-based switching ILMPC system is analyzed theoretically under two situations divided by the switching condition. The simulations on a numerical example and the injection molding process verify the superiority of the proposed control methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
瘦瘦慕凝发布了新的文献求助10
1秒前
二兄发布了新的文献求助10
1秒前
2秒前
axhh发布了新的文献求助10
2秒前
笨笨的愫应助番茄大王采纳,获得10
3秒前
3秒前
皮蛋solo粥发布了新的文献求助10
3秒前
3秒前
kong完成签到,获得积分10
3秒前
4秒前
盛景洲发布了新的文献求助10
4秒前
十令完成签到,获得积分10
4秒前
4秒前
orixero应助一心搞科研采纳,获得10
5秒前
称心道消发布了新的文献求助10
6秒前
6秒前
慕青应助瘦瘦慕凝采纳,获得10
7秒前
7秒前
moneymonoo完成签到,获得积分10
7秒前
7秒前
勤恳的雨文完成签到,获得积分10
7秒前
8秒前
聪慧小霜应助sharronjxx采纳,获得10
8秒前
勤奋青寒发布了新的文献求助10
9秒前
赘婿应助海盐采纳,获得30
9秒前
10秒前
可爱的函函应助Tiffany采纳,获得10
10秒前
诸葛朝雪完成签到,获得积分10
10秒前
11秒前
san行发布了新的文献求助10
11秒前
moneymonoo发布了新的文献求助10
12秒前
12秒前
阿翔完成签到,获得积分10
12秒前
闪闪寒云完成签到 ,获得积分10
12秒前
12秒前
JYY发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585651
求助须知:如何正确求助?哪些是违规求助? 4002263
关于积分的说明 12389980
捐赠科研通 3678396
什么是DOI,文献DOI怎么找? 2027345
邀请新用户注册赠送积分活动 1060821
科研通“疑难数据库(出版商)”最低求助积分说明 947307