Event-Based Switching Iterative Learning Model Predictive Control for Batch Processes With Randomly Varying Trial Lengths

计算机科学 趋同(经济学) 迭代学习控制 事件(粒子物理) 模型预测控制 过程(计算) 控制理论(社会学) 人工神经网络 机器学习 控制(管理) 人工智能 算法 经济增长 量子力学 操作系统 物理 经济
作者
Lele Ma,Xiangjie Liu,Furong Gao,Kwang Y. Lee
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (12): 7881-7894 被引量:3
标识
DOI:10.1109/tcyb.2023.3234630
摘要

Iterative learning model predictive control (ILMPC) has been recognized as an excellent batch process control strategy for progressively improving tracking performance along trials. However, as a typical learning-based control method, ILMPC generally requires the strict identity of trial lengths to implement 2-D receding horizon optimization. The randomly varying trial lengths extensively existing in practice can result in the insufficiency of learning prior information, and even the suspension of control update. Regarding this issue, this article embeds a novel prediction-based modification mechanism into ILMPC, to adjust the process data of each trial into the same length by compensating the data of absent running periods with the predictive sequences at the end point. Under this modification scheme, it is proved that the convergence of the classical ILMPC is guaranteed by an inequality condition relative with the probability distribution of trial lengths. Considering the practical batch process with complex nonlinearity, a 2-D neural-network predictive model with parameter adaptability along trials is established to generate highly matched compensation data for the prediction-based modification. To best utilize the real process information of multiple past trials while guaranteeing the learning priority of the latest trials, an event-based switching learning structure is proposed in ILMPC to determine different learning orders according to the probability event with respect to the trial length variation direction. The convergence of the nonlinear event-based switching ILMPC system is analyzed theoretically under two situations divided by the switching condition. The simulations on a numerical example and the injection molding process verify the superiority of the proposed control methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgl完成签到 ,获得积分20
1秒前
伯赏元彤发布了新的文献求助10
3秒前
Bin_Liu完成签到,获得积分20
3秒前
惜筠完成签到,获得积分10
4秒前
科研通AI2S应助Gu采纳,获得10
6秒前
生化爱科研完成签到,获得积分10
7秒前
传统的复天完成签到,获得积分10
7秒前
silin完成签到,获得积分10
8秒前
雨季不再来完成签到 ,获得积分10
10秒前
10秒前
伯赏元彤完成签到,获得积分10
11秒前
13秒前
16秒前
Dr发布了新的文献求助10
17秒前
19秒前
hope完成签到,获得积分10
19秒前
芒芒发paper完成签到 ,获得积分10
21秒前
简单的易云完成签到,获得积分10
25秒前
经纲完成签到 ,获得积分0
26秒前
顾矜应助Zhjie126采纳,获得10
26秒前
bkagyin应助Anonymous采纳,获得10
28秒前
英俊的铭应助Dr采纳,获得10
30秒前
不倦应助hkl1542采纳,获得10
31秒前
liubo完成签到,获得积分10
32秒前
32秒前
寒冷的月亮完成签到 ,获得积分10
37秒前
TH发布了新的文献求助10
39秒前
39秒前
孝铮完成签到 ,获得积分10
41秒前
辰荼白完成签到,获得积分10
41秒前
拼搏尔风完成签到,获得积分10
44秒前
Anonymous发布了新的文献求助10
45秒前
一个柔弱的读书人完成签到 ,获得积分10
46秒前
向往完成签到 ,获得积分10
49秒前
49秒前
53秒前
c123完成签到 ,获得积分10
54秒前
56秒前
江风海韵完成签到,获得积分10
56秒前
56秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212550
求助须知:如何正确求助?哪些是违规求助? 4388677
关于积分的说明 13664311
捐赠科研通 4249234
什么是DOI,文献DOI怎么找? 2331457
邀请新用户注册赠送积分活动 1329162
关于科研通互助平台的介绍 1282582