Event-Based Switching Iterative Learning Model Predictive Control for Batch Processes With Randomly Varying Trial Lengths

计算机科学 趋同(经济学) 迭代学习控制 事件(粒子物理) 模型预测控制 过程(计算) 控制理论(社会学) 人工神经网络 机器学习 控制(管理) 人工智能 算法 经济增长 量子力学 操作系统 物理 经济
作者
Lele Ma,Xiangjie Liu,Furong Gao,Kwang Y. Lee
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (12): 7881-7894 被引量:3
标识
DOI:10.1109/tcyb.2023.3234630
摘要

Iterative learning model predictive control (ILMPC) has been recognized as an excellent batch process control strategy for progressively improving tracking performance along trials. However, as a typical learning-based control method, ILMPC generally requires the strict identity of trial lengths to implement 2-D receding horizon optimization. The randomly varying trial lengths extensively existing in practice can result in the insufficiency of learning prior information, and even the suspension of control update. Regarding this issue, this article embeds a novel prediction-based modification mechanism into ILMPC, to adjust the process data of each trial into the same length by compensating the data of absent running periods with the predictive sequences at the end point. Under this modification scheme, it is proved that the convergence of the classical ILMPC is guaranteed by an inequality condition relative with the probability distribution of trial lengths. Considering the practical batch process with complex nonlinearity, a 2-D neural-network predictive model with parameter adaptability along trials is established to generate highly matched compensation data for the prediction-based modification. To best utilize the real process information of multiple past trials while guaranteeing the learning priority of the latest trials, an event-based switching learning structure is proposed in ILMPC to determine different learning orders according to the probability event with respect to the trial length variation direction. The convergence of the nonlinear event-based switching ILMPC system is analyzed theoretically under two situations divided by the switching condition. The simulations on a numerical example and the injection molding process verify the superiority of the proposed control methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助wyb采纳,获得10
刚刚
刚刚
刚刚
祝雨晴完成签到 ,获得积分10
刚刚
翼德救我i应助迷你的念珍采纳,获得10
刚刚
1111完成签到,获得积分10
2秒前
杨秋月完成签到,获得积分10
2秒前
汉桑波欸完成签到,获得积分10
2秒前
共享精神应助抚琴祛魅采纳,获得30
2秒前
3秒前
单单来迟完成签到,获得积分10
3秒前
完美世界应助发发发采纳,获得10
3秒前
科研通AI6应助wp采纳,获得10
3秒前
huakun发布了新的文献求助10
5秒前
耕云钓月完成签到,获得积分10
5秒前
5秒前
你的发布了新的文献求助10
6秒前
CR7应助grace135采纳,获得20
7秒前
7秒前
科研通AI5应助刻苦的雨莲采纳,获得30
7秒前
和谐的素完成签到,获得积分10
8秒前
8秒前
9秒前
iNk应助洛尘采纳,获得20
9秒前
9秒前
量子星尘发布了新的文献求助50
9秒前
Yuanyuan发布了新的文献求助10
11秒前
yyj完成签到,获得积分10
11秒前
Killor完成签到,获得积分10
12秒前
64658应助云赵采纳,获得10
12秒前
13秒前
斯文败类应助mm采纳,获得10
13秒前
Moon发布了新的文献求助10
13秒前
hilapo发布了新的文献求助10
14秒前
14秒前
wyb发布了新的文献求助10
15秒前
18秒前
20秒前
量子星尘发布了新的文献求助50
20秒前
树池完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920907
求助须知:如何正确求助?哪些是违规求助? 4192271
关于积分的说明 13021164
捐赠科研通 3963456
什么是DOI,文献DOI怎么找? 2172475
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099310