IF-City: Intelligible Fair City Planning to Measure, Explain and Mitigate Inequality

计算机科学 规划师 反事实思维 领域(数学分析) 工作流程 城市规划 平面图(考古学) 数据科学 约束(计算机辅助设计) 不平等 管理科学 人工智能 数据库 经济 工程类 考古 哲学 数学分析 生态学 认识论 历史 生物 机械工程 数学
作者
Yan Lyu,Hangxin Lu,Min Kyung Lee,Gerhard Schmitt,Brian Y. Lim
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:30 (7): 3749-3766 被引量:6
标识
DOI:10.1109/tvcg.2023.3239909
摘要

With the increasing pervasiveness of Artificial Intelligence (AI), many visual analytics tools have been proposed to examine fairness, but they mostly focus on data scientist users. Instead, tackling fairness must be inclusive and involve domain experts with specialized tools and workflows. Thus, domain-specific visualizations are needed for algorithmic fairness. Furthermore, while much work on AI fairness has focused on predictive decisions, less has been done for fair allocation and planning, which require human expertise and iterative design to integrate myriad constraints. We propose the Intelligible Fair Allocation (IF-Alloc) Framework that leverages explanations of causal attribution (Why), contrastive (Why Not) and counterfactual reasoning (What If, How To) to aid domain experts to assess and alleviate unfairness in allocation problems. We apply the framework to fair urban planning for designing cities that provide equal access to amenities and benefits for diverse resident types. Specifically, we propose an interactive visual tool, Intelligible Fair City Planner (IF-City), to help urban planners to perceive inequality across groups, identify and attribute sources of inequality, and mitigate inequality with automatic allocation simulations and constraint-satisfying recommendations (IF-Plan). We demonstrate and evaluate the usage and usefulness of IF-City on a real neighborhood in New York City, US, with practicing urban planners from multiple countries, and discuss generalizing our findings, application, and framework to other use cases and applications of fair allocation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饱满太阳完成签到 ,获得积分10
刚刚
橙子发布了新的文献求助10
刚刚
刚刚
xy发布了新的文献求助10
2秒前
2秒前
伶俐的星月完成签到,获得积分10
3秒前
小二郎应助Horizon采纳,获得10
3秒前
3秒前
lzx完成签到,获得积分10
4秒前
4秒前
小蘑菇应助若米采纳,获得10
4秒前
Georges-09完成签到,获得积分10
5秒前
小马甲应助实验顺利采纳,获得10
5秒前
吴迪发布了新的文献求助10
5秒前
雁过留声完成签到,获得积分10
5秒前
6秒前
brouf完成签到 ,获得积分10
6秒前
个性的荆发布了新的文献求助10
7秒前
llf应助独特的追命采纳,获得20
7秒前
8秒前
满意语芙发布了新的文献求助10
9秒前
10秒前
10秒前
豆豆完成签到,获得积分10
10秒前
wang5945发布了新的文献求助10
11秒前
颖123发布了新的文献求助30
11秒前
apong发布了新的文献求助10
12秒前
12秒前
zzr完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
渡月桥完成签到,获得积分10
14秒前
田大明发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901