Automatic and Efficient Framework for Identifying Multiple Neurological Disorders From EEG Signals

脑电图 计算机科学 神经科学 人工智能 语音识别 心理学
作者
Md. Nurul Ahad Tawhid,Siuly Siuly,Kate Wang,Hua Wang
出处
期刊:IEEE transactions on technology and society [Institute of Electrical and Electronics Engineers]
卷期号:4 (1): 76-86 被引量:32
标识
DOI:10.1109/tts.2023.3239526
摘要

The burden of neurological disorders is huge on global health and recognized as major causes of death and disability worldwide. There are more than 600 neurological diseases, but there is no unique automatic standard detection system yet to identify multiple neurological disorders using a single framework. Hence, this study aims to develop a common computer-aided diagnosis (CAD) system for automatic detection of multiple neurological disorders from EEG signals. In this study, we introduce a new single framework for automatic identification of four common neurological disorders, namely autism, epilepsy, parkinson's disease, and schizophrenia, from EEG data. The proposed framework is designed based on convolutional neural network (CNN) and spectrogram images of EEG signal for classifying four neurological disorders from healthy subjects (five classes). In the proposed design, firstly, the EEG signals are pre-processed for removing artifacts and noises and then converted into two-dimensional time-frequency-based spectrogram images using short-time Fourier transform. Afterwards, a CNN model is designed to perform five-class classification using those spectrogram images. The proposed method achieves much better performance in both efficiency and accuracy compared to two other popular CNN models: AlexNet and ResNet50. In addition, the performance of the proposed model is also evaluated on binary classification (disease vs. healthy) which also outperforms the state-of-the-art results for tested datasets. The obtained results recommend that our proposed framework will be helpful for developing a CAD system to assist the clinicians and experts in the automatic diagnosis process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助zhf采纳,获得10
刚刚
Yael发布了新的文献求助10
刚刚
笨笨发布了新的文献求助10
2秒前
moroa完成签到,获得积分10
3秒前
aabb完成签到,获得积分10
3秒前
5秒前
cccu完成签到 ,获得积分10
5秒前
5秒前
张果果果完成签到 ,获得积分10
6秒前
8秒前
cccu关注了科研通微信公众号
8秒前
马里布农奴完成签到,获得积分10
9秒前
畅快的毛衣应助笨笨采纳,获得10
12秒前
12秒前
汉堡包应助阳佟之槐采纳,获得10
12秒前
13秒前
15秒前
Yael完成签到,获得积分10
15秒前
16秒前
温暖的幼枫完成签到,获得积分10
16秒前
科研通AI5应助耶耶耶采纳,获得10
17秒前
18秒前
汉堡包应助第一步催化B采纳,获得10
19秒前
21秒前
机灵海之发布了新的文献求助10
23秒前
醉熏的小土豆完成签到,获得积分10
23秒前
23秒前
26秒前
隐形曼青应助文章快快来采纳,获得10
26秒前
GRJ发布了新的文献求助10
27秒前
27秒前
27秒前
melon发布了新的文献求助10
27秒前
迟大猫应助LU采纳,获得10
29秒前
30秒前
30秒前
其7发布了新的文献求助10
30秒前
孤独患者发布了新的文献求助10
30秒前
Y毓发布了新的文献求助10
30秒前
lyh应助guozizi采纳,获得10
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483822
求助须知:如何正确求助?哪些是违规求助? 3073054
关于积分的说明 9129181
捐赠科研通 2764683
什么是DOI,文献DOI怎么找? 1517299
邀请新用户注册赠送积分活动 702065
科研通“疑难数据库(出版商)”最低求助积分说明 700880