DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition

计算机科学 变压器 人工智能 冗余(工程) 理论计算机科学 模式识别(心理学) 计算机视觉 量子力学 操作系统 物理 电压
作者
Jiayu Jiao,Yu-Ming Tang,Kun-Yu Lin,Yipeng Gao,J. Andy,Yaowei Wang,Wei‐Shi Zheng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8906-8919 被引量:37
标识
DOI:10.1109/tmm.2023.3243616
摘要

As a de facto solution, the vanilla Vision Transformers (ViTs) are encouraged to model long-range dependencies between arbitrary image patches while the global attended receptive field leads to quadratic computational cost. Another branch of Vision Transformers exploits local attention inspired by CNNs, which only models the interactions between patches in small neighborhoods. Although such a solution reduces the computational cost, it naturally suffers from small attended receptive fields, which may limit the performance. In this work, we explore effective Vision Transformers to pursue a preferable trade-off between the computational complexity and size of the attended receptive field. By analyzing the patch interaction of global attention in ViTs, we observe two key properties in the shallow layers, namely locality and sparsity, indicating the redundancy of global dependency modeling in shallow layers of ViTs. Accordingly, we propose Multi-Scale Dilated Attention (MSDA) to model local and sparse patch interaction within the sliding window. With a pyramid architecture, we construct a Multi-Scale Dilated Transformer (DilateFormer) by stacking MSDA blocks at low-level stages and global multi-head self-attention blocks at high-level stages. Our experiment results show that our DilateFormer achieves state-of-the-art performance on various vision tasks. On ImageNet-1 K classification task, DilateFormer achieves comparable performance with 70% fewer FLOPs compared with existing state-of-the-art models. Our DilateFormer-Base achieves 85.6% top-1 accuracy on ImageNet-1 K classification task, 53.5% box mAP/46.1% mask mAP on COCO object detection/instance segmentation task and 51.1% MS mIoU on ADE20 K semantic segmentation task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冯昊发布了新的文献求助10
2秒前
AaronW应助cnmkyt采纳,获得10
4秒前
北欧海盗发布了新的文献求助10
4秒前
JamesPei应助ntxlks采纳,获得10
4秒前
章鱼小丸子完成签到,获得积分10
7秒前
无花果应助dev-evo采纳,获得10
7秒前
慕青应助冯昊采纳,获得10
7秒前
一颗树发布了新的文献求助10
9秒前
郑盼秋完成签到,获得积分10
10秒前
14秒前
aa完成签到,获得积分10
14秒前
yoly完成签到,获得积分10
14秒前
David发布了新的文献求助10
14秒前
852应助xinxin采纳,获得10
14秒前
D1504009654完成签到,获得积分10
15秒前
SGY完成签到,获得积分20
16秒前
英俊丹秋发布了新的文献求助10
17秒前
小马甲应助Chrishoper采纳,获得10
17秒前
子车茗应助刘洋采纳,获得10
17秒前
张涛发布了新的文献求助10
18秒前
19秒前
Hello应助北欧海盗采纳,获得10
19秒前
科研通AI2S应助jianjiao采纳,获得10
21秒前
maomao发布了新的文献求助10
22秒前
Jason发布了新的文献求助10
23秒前
24秒前
科目三应助lxy采纳,获得10
24秒前
清寻完成签到 ,获得积分10
25秒前
26秒前
自觉樱桃应助沉静的迎荷采纳,获得10
27秒前
27秒前
28秒前
小马甲应助Ann采纳,获得10
29秒前
29秒前
余未晚应助鹌鹑蛋采纳,获得38
30秒前
北欧海盗完成签到,获得积分10
30秒前
31秒前
忧子忘发布了新的文献求助10
31秒前
rickplug发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160894
求助须知:如何正确求助?哪些是违规求助? 2812133
关于积分的说明 7894461
捐赠科研通 2470993
什么是DOI,文献DOI怎么找? 1315830
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068