DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition

计算机科学 变压器 人工智能 冗余(工程) 理论计算机科学 模式识别(心理学) 计算机视觉 量子力学 操作系统 物理 电压
作者
Jiayu Jiao,Yu-Ming Tang,Kun-Yu Lin,Yipeng Gao,J. Andy,Yaowei Wang,Wei‐Shi Zheng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 8906-8919 被引量:37
标识
DOI:10.1109/tmm.2023.3243616
摘要

As a de facto solution, the vanilla Vision Transformers (ViTs) are encouraged to model long-range dependencies between arbitrary image patches while the global attended receptive field leads to quadratic computational cost. Another branch of Vision Transformers exploits local attention inspired by CNNs, which only models the interactions between patches in small neighborhoods. Although such a solution reduces the computational cost, it naturally suffers from small attended receptive fields, which may limit the performance. In this work, we explore effective Vision Transformers to pursue a preferable trade-off between the computational complexity and size of the attended receptive field. By analyzing the patch interaction of global attention in ViTs, we observe two key properties in the shallow layers, namely locality and sparsity, indicating the redundancy of global dependency modeling in shallow layers of ViTs. Accordingly, we propose Multi-Scale Dilated Attention (MSDA) to model local and sparse patch interaction within the sliding window. With a pyramid architecture, we construct a Multi-Scale Dilated Transformer (DilateFormer) by stacking MSDA blocks at low-level stages and global multi-head self-attention blocks at high-level stages. Our experiment results show that our DilateFormer achieves state-of-the-art performance on various vision tasks. On ImageNet-1 K classification task, DilateFormer achieves comparable performance with 70% fewer FLOPs compared with existing state-of-the-art models. Our DilateFormer-Base achieves 85.6% top-1 accuracy on ImageNet-1 K classification task, 53.5% box mAP/46.1% mask mAP on COCO object detection/instance segmentation task and 51.1% MS mIoU on ADE20 K semantic segmentation task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卓哥发布了新的文献求助10
1秒前
科研通AI5应助sansan采纳,获得10
2秒前
2秒前
2秒前
脑洞疼应助杰森斯坦虎采纳,获得10
2秒前
4秒前
5秒前
研友_QQC完成签到,获得积分10
5秒前
NeuroWhite完成签到,获得积分10
5秒前
5秒前
搜索v完成签到,获得积分10
6秒前
liuchuck完成签到 ,获得积分10
6秒前
6秒前
6秒前
猫独秀完成签到,获得积分10
6秒前
8秒前
buno应助yuefeng采纳,获得10
8秒前
yiming完成签到,获得积分10
8秒前
落落发布了新的文献求助10
9秒前
清秋若月完成签到 ,获得积分10
9秒前
9秒前
呵呵呵呵完成签到,获得积分10
10秒前
10秒前
远方发布了新的文献求助10
11秒前
zxc111关注了科研通微信公众号
11秒前
12秒前
nanhe698发布了新的文献求助10
12秒前
Huang完成签到,获得积分10
12秒前
碳土不凡完成签到 ,获得积分10
13秒前
13秒前
淡淡采白发布了新的文献求助10
14秒前
14秒前
15秒前
Akim应助dingdong采纳,获得10
15秒前
15秒前
15秒前
satchzhao发布了新的文献求助10
15秒前
可爱的函函应助尺素寸心采纳,获得10
15秒前
66发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808