Novel deep‐learning model for chemical process fault detection based on DCW transformer

变压器 计算机科学 工程类 电气工程 电压
作者
Ying Xie,Fanchao Hu,Yuan Zhu
出处
期刊:Canadian Journal of Chemical Engineering [Wiley]
标识
DOI:10.1002/cjce.25507
摘要

Abstract In this study, a double‐channel convolutional neural network and weighted (DCW) transformer model is proposed to address the problem of insufficient extraction of local information and no attention to channel‐step information in the traditional transformer model. First, a double‐channel information extraction method is proposed, so both the channel‐step and time‐step information achieve attention; second, the local information in the time and channel dimension of the data is extracted from deep and multiple scales, improving the feature extraction capability for local information; third, the long distance dependency relationship of the data is preserved by the attention mechanism, hence, the global correlation of the data is extracted effectively; finally, using the Gumbel‐SoftMax function, the weights of the time‐step and channel‐step feature information are assigned, so the extracted feature information has been optimized. The proposed method was applied for the penicillin fermentation process to verify its efficacy. Experimental results show that the proposed method achieved a better fault detection accuracy, outperforming the existing models. Further ablation experiments were conducted to demonstrate the effectiveness of each component of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Harries发布了新的文献求助10
2秒前
2秒前
slowride发布了新的文献求助10
3秒前
3秒前
丫丫完成签到,获得积分10
3秒前
小尾巴发布了新的文献求助10
4秒前
糊涂的凡松完成签到,获得积分10
4秒前
CodeCraft应助第二只羽毛采纳,获得10
5秒前
5秒前
玄米茶发布了新的文献求助10
6秒前
6秒前
小兰花完成签到,获得积分10
6秒前
Robin_Tao完成签到,获得积分10
7秒前
rrjl完成签到,获得积分10
7秒前
superxiao应助美满的冬卉采纳,获得20
7秒前
7秒前
所所应助干雅柏采纳,获得10
8秒前
桃宝儿完成签到,获得积分10
9秒前
虚心的垣完成签到 ,获得积分10
9秒前
大模型应助来可追采纳,获得10
9秒前
Army616完成签到,获得积分10
9秒前
10秒前
一株多肉完成签到,获得积分10
10秒前
JamesPei应助asd0817采纳,获得10
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
Leach发布了新的文献求助10
11秒前
yy完成签到,获得积分10
12秒前
汉堡包应助科研圈外人采纳,获得10
13秒前
渣渣慧发布了新的文献求助10
14秒前
jiangxinzhi完成签到,获得积分10
15秒前
15秒前
烟花应助小尾巴采纳,获得10
15秒前
ilyaxxx发布了新的文献求助10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842288
求助须知:如何正确求助?哪些是违规求助? 3384399
关于积分的说明 10534504
捐赠科研通 3104830
什么是DOI,文献DOI怎么找? 1709838
邀请新用户注册赠送积分活动 823410
科研通“疑难数据库(出版商)”最低求助积分说明 774050