生物
氮气
禾本科
扎梅斯
农学
植物
量子力学
物理
作者
Raziel A. Ordóñez,Lía B. Olmedo Pico,Frank G. Dohleman,Esteban Fernández‐Juricic,Garrett S. Verhagen,Tony J. Vyn
摘要
Abstract Despite a historical favoring of robust tall plants in maize ( Zea mays L.) production systems as a potential indicator of increased total and/or grain biomass yields, short‐statured maize is receiving renewed commercial attention in North America. Little is known of the relative N efficiencies resulting from potential inter‐stature differences in dry matter formation and N processes during pre‐ and post‐silking stages. To investigate this, two field rainfed experiments were conducted in West Lafayette, IN. The experiments included factorial combinations of two tall‐ and two short‐statured maize hybrids subjected to three N rates: 0 (unfertilized), 168 (moderate), and 224 kg N ha −1 (elevated) applied at planting. Short hybrids with a 25% reduced stature showed no statistically significant differences in seasonal biomass accumulation and N uptake, or in biomass partitioning to grain (harvest index) versus stover at maturity relative to conventional tall hybrids. Increased leaf biomass and ear growth at silking, plus comparable quantities of N remobilization from stems during grain filling, with short‐stature maize contributed to its grain yield parity with tall‐stature maize. Additionally, our research revealed other noteworthy findings: short‐statured maize had higher N harvest index and N recovery efficiency than the tall maize, implying more N status resiliency at moderate N rates. The lack of interactions between N × stature in most studied traits suggests that short hybrids can perform at least as well as conventional tall hybrids across a range of N rates. Our findings provide insights for fine‐tuning of breeding and management programs.
科研通智能强力驱动
Strongly Powered by AbleSci AI