Reliable Node Similarity Matrix Guided Contrastive Graph Clustering

计算机科学 聚类分析 相似性(几何) 人工智能 图形 理论计算机科学 图像(数学)
作者
Yun-Hui Liu,Xinyi Gao,Tieke He,Tao Zheng,Jianhua Zhao,Hongzhi Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (12): 9123-9135
标识
DOI:10.1109/tkde.2024.3435887
摘要

Graph clustering, which involves the partitioning of nodes within a graph into disjoint clusters, holds significant importance for numerous subsequent applications.Recently, contrastive learning, known for utilizing supervisory information, has demonstrated encouraging results in deep graph clustering.This methodology facilitates the learning of favorable node representations for clustering by attracting positively correlated node pairs and distancing negatively correlated pairs within the representation space.Nevertheless, a significant limitation of existing methods is their inadequacy in thoroughly exploring node-wise similarity.For instance, some hypothesize that the node similarity matrix within the representation space is identical, ignoring the inherent semantic relationships among nodes.Given the fundamental role of instance similarity in clustering, our research investigates contrastive graph clustering from the perspective of the node similarity matrix.We argue that an ideal node similarity matrix within the representation space should accurately reflect the inherent semantic relationships among nodes, ensuring the preservation of semantic similarities in the learned representations.In response to this, we introduce a new framework, Reliable Node Similarity Matrix Guided Contrastive Graph Clustering (NS4GC), which estimates an approximately ideal node similarity matrix within the representation space to guide representation learning.Our method introduces nodeneighbor alignment and semantic-aware sparsification, ensuring the node similarity matrix is both accurate and efficiently sparse.Comprehensive experiments conducted on 8 real-world datasets affirm the efficacy of learning the node similarity matrix and the superior performance of NS4GC.The implementation code can be found at: https://github.com/Cloudy1225/NS4GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
微笑的小刺猬完成签到 ,获得积分10
2秒前
Hello应助xjy采纳,获得10
4秒前
4秒前
5秒前
是否跨凤乘龙完成签到,获得积分10
5秒前
小二郎应助自己采纳,获得10
5秒前
sandra完成签到,获得积分10
6秒前
独特冰安发布了新的文献求助10
7秒前
只A不B应助十二采纳,获得30
8秒前
8秒前
999999完成签到,获得积分10
8秒前
Grace完成签到,获得积分10
9秒前
风趣的老太应助开朗洋葱采纳,获得10
10秒前
10秒前
10秒前
大模型应助qweasdzxcqwe采纳,获得10
11秒前
12秒前
12秒前
一年5篇发布了新的文献求助10
13秒前
研友_VZG7GZ应助ywl采纳,获得10
15秒前
15秒前
15秒前
LaTeXer应助友好寻真采纳,获得50
15秒前
澡雪发布了新的文献求助10
15秒前
17秒前
17秒前
XXX完成签到,获得积分10
18秒前
sandra完成签到,获得积分10
19秒前
20秒前
战战兢兢完成签到 ,获得积分10
20秒前
HQK发布了新的文献求助10
21秒前
21秒前
CodeCraft应助avc采纳,获得10
21秒前
Leon发布了新的文献求助10
21秒前
科目三应助Queena采纳,获得10
22秒前
22秒前
完美世界应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
谭凯文完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975661
求助须知:如何正确求助?哪些是违规求助? 3520000
关于积分的说明 11200535
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806390