Reliable Node Similarity Matrix Guided Contrastive Graph Clustering

计算机科学 聚类分析 相似性(几何) 人工智能 图形 理论计算机科学 图像(数学)
作者
Yun-Hui Liu,Xinyi Gao,Tieke He,Tao Zheng,Jianhua Zhao,Hongzhi Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (12): 9123-9135
标识
DOI:10.1109/tkde.2024.3435887
摘要

Graph clustering, which involves the partitioning of nodes within a graph into disjoint clusters, holds significant importance for numerous subsequent applications.Recently, contrastive learning, known for utilizing supervisory information, has demonstrated encouraging results in deep graph clustering.This methodology facilitates the learning of favorable node representations for clustering by attracting positively correlated node pairs and distancing negatively correlated pairs within the representation space.Nevertheless, a significant limitation of existing methods is their inadequacy in thoroughly exploring node-wise similarity.For instance, some hypothesize that the node similarity matrix within the representation space is identical, ignoring the inherent semantic relationships among nodes.Given the fundamental role of instance similarity in clustering, our research investigates contrastive graph clustering from the perspective of the node similarity matrix.We argue that an ideal node similarity matrix within the representation space should accurately reflect the inherent semantic relationships among nodes, ensuring the preservation of semantic similarities in the learned representations.In response to this, we introduce a new framework, Reliable Node Similarity Matrix Guided Contrastive Graph Clustering (NS4GC), which estimates an approximately ideal node similarity matrix within the representation space to guide representation learning.Our method introduces nodeneighbor alignment and semantic-aware sparsification, ensuring the node similarity matrix is both accurate and efficiently sparse.Comprehensive experiments conducted on 8 real-world datasets affirm the efficacy of learning the node similarity matrix and the superior performance of NS4GC.The implementation code can be found at: https://github.com/Cloudy1225/NS4GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小兑发布了新的文献求助10
刚刚
刚刚
智慧女孩完成签到,获得积分10
刚刚
仁爱的寻凝完成签到,获得积分10
1秒前
vadfdfb发布了新的文献求助10
2秒前
时尚战斗机应助Cici采纳,获得10
2秒前
怕孤独的谷波完成签到,获得积分10
3秒前
liliya完成签到,获得积分20
3秒前
英姑应助孤独的珩采纳,获得10
3秒前
keyaner发布了新的文献求助30
3秒前
秦淮发布了新的文献求助10
4秒前
英俊的铭应助wjw采纳,获得30
4秒前
刘荣圣发布了新的文献求助10
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
852应助奋斗的忆之采纳,获得10
7秒前
kakin完成签到,获得积分10
7秒前
7秒前
8秒前
在水一方应助清新的Q采纳,获得10
8秒前
wanci应助vadfdfb采纳,获得10
9秒前
风趣的语蕊完成签到,获得积分10
11秒前
秦淮完成签到,获得积分10
12秒前
bingbing发布了新的文献求助10
12秒前
12秒前
AKKKK完成签到,获得积分10
12秒前
幽默的厉完成签到,获得积分10
13秒前
13秒前
14秒前
留胡子的霖完成签到,获得积分10
14秒前
14秒前
14秒前
迅速初柳发布了新的文献求助10
14秒前
小杰发布了新的文献求助10
15秒前
15秒前
15秒前
标致的战斗机完成签到,获得积分10
16秒前
17秒前
joyemovie发布了新的文献求助10
18秒前
Jinnnnn完成签到,获得积分10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891