Reliable Node Similarity Matrix Guided Contrastive Graph Clustering

计算机科学 聚类分析 相似性(几何) 人工智能 图形 理论计算机科学 图像(数学)
作者
Yun-Hui Liu,Xinyi Gao,Tieke He,Tao Zheng,Jianhua Zhao,Hongzhi Yin
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (12): 9123-9135
标识
DOI:10.1109/tkde.2024.3435887
摘要

Graph clustering, which involves the partitioning of nodes within a graph into disjoint clusters, holds significant importance for numerous subsequent applications.Recently, contrastive learning, known for utilizing supervisory information, has demonstrated encouraging results in deep graph clustering.This methodology facilitates the learning of favorable node representations for clustering by attracting positively correlated node pairs and distancing negatively correlated pairs within the representation space.Nevertheless, a significant limitation of existing methods is their inadequacy in thoroughly exploring node-wise similarity.For instance, some hypothesize that the node similarity matrix within the representation space is identical, ignoring the inherent semantic relationships among nodes.Given the fundamental role of instance similarity in clustering, our research investigates contrastive graph clustering from the perspective of the node similarity matrix.We argue that an ideal node similarity matrix within the representation space should accurately reflect the inherent semantic relationships among nodes, ensuring the preservation of semantic similarities in the learned representations.In response to this, we introduce a new framework, Reliable Node Similarity Matrix Guided Contrastive Graph Clustering (NS4GC), which estimates an approximately ideal node similarity matrix within the representation space to guide representation learning.Our method introduces nodeneighbor alignment and semantic-aware sparsification, ensuring the node similarity matrix is both accurate and efficiently sparse.Comprehensive experiments conducted on 8 real-world datasets affirm the efficacy of learning the node similarity matrix and the superior performance of NS4GC.The implementation code can be found at: https://github.com/Cloudy1225/NS4GC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
zmy完成签到 ,获得积分10
4秒前
5秒前
fifteen发布了新的文献求助10
10秒前
小富婆发布了新的文献求助10
10秒前
汉堡包应助YY采纳,获得10
10秒前
10秒前
爆米花应助岁岁采纳,获得10
11秒前
FashionBoy应助陈尹蓝采纳,获得10
11秒前
俭朴傲柏发布了新的文献求助10
11秒前
小二郎应助chenbin采纳,获得10
12秒前
Wilson发布了新的文献求助10
13秒前
14秒前
14秒前
可爱的函函应助小富婆采纳,获得10
14秒前
君子兰发布了新的文献求助20
16秒前
华仔应助霓虹熄世界清采纳,获得10
17秒前
18秒前
18秒前
小二郎应助水1111采纳,获得10
19秒前
史道夫发布了新的文献求助10
19秒前
SpongeBob发布了新的文献求助20
19秒前
无情的烨伟完成签到,获得积分10
20秒前
20秒前
20秒前
娇气的含莲关注了科研通微信公众号
23秒前
豆子发布了新的文献求助10
23秒前
陈尹蓝发布了新的文献求助10
23秒前
一叶扁舟发布了新的文献求助10
23秒前
端庄的小蝴蝶完成签到,获得积分10
24秒前
24秒前
俭朴傲柏完成签到,获得积分10
25秒前
26秒前
26秒前
27秒前
大个应助坚强的严青采纳,获得30
27秒前
Hello应助坚强的严青采纳,获得10
27秒前
28秒前
Wilson完成签到,获得积分20
28秒前
丘比特应助SpongeBob采纳,获得20
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153522
求助须知:如何正确求助?哪些是违规求助? 2804730
关于积分的说明 7861275
捐赠科研通 2462658
什么是DOI,文献DOI怎么找? 1310909
科研通“疑难数据库(出版商)”最低求助积分说明 629416
版权声明 601809