Metabolic pathway and network analysis integration for discovering the biomarkers in pig feces after a controlled fruit-vegetable dietary intervention

代谢组学 代谢物 粪便 原儿茶酸 食品科学 生物 代谢组 代谢途径 生物标志物 生物化学 生物信息学 新陈代谢 微生物学 抗氧化剂
作者
Zhihao Liu,Gloria Solano‐Aguilar,Sukla Lakshman,Joseph F. Urban,Mengliang Zhang,Pei Chen,Liangli Yu,Jianghao Sun
出处
期刊:Food Chemistry [Elsevier]
卷期号:461: 140836-140836
标识
DOI:10.1016/j.foodchem.2024.140836
摘要

This study aimed to establish a strategy for identifying dietary intake biomarkers using a non-targeted metabolomic approach, including metabolic pathway and network analysis. The strategy was successfully applied to identify dietary intake biomarkers in fecal samples from pigs fed two doses of a polyphenol-rich fruit and vegetable (FV) diet following the Dietary Guidelines for Americans (DGA) recommendations. Potential biomarkers were identified among dietary treatment groups using liquid chromatography-high resolution mass spectrometry (LC-HRMS) based on a non-targeted metabolomic approach with metabolic pathway and network analysis. Principal component analysis (PCA) results showed significant differences in fecal metabolite profiles between the control and two FV intervention groups, indicating a diet-induced differential fecal metabolite profile after FV intervention. Metabolites from common flavonoids, e.g., (epi)catechin and protocatechuic acid, or unique flavonoids, e.g., 5,3',4'-trihydroxy-3-methoxy-6,7-methylenedioxyflavone and 3,5,3',4'-tetrahydroxy-6,7-methylenedioxyflavone, were identified as highly discriminating factors, confirming their potential as fecal markers for the FV dietary intervention. Microbiota pathway prediction using targeted flavonoids provided valuable and reliable biomarker exploration with high confidence. A correlation network analysis between these discriminatory ion features was applied to find connections to possible dietary biomarkers, further validating these biomarkers with biochemical insights. This study demonstrates that integrating metabolic pathways and network analysis with a non-targeted metabolomic approach is highly effective for rapid and accurate identification and prediction of fecal biomarkers under controlled dietary conditions in animal studies. This approach can also be utilized to study microbial metabolisms in human clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy完成签到 ,获得积分10
刚刚
小可完成签到 ,获得积分10
1秒前
斯文败类应助shanjianjie采纳,获得20
1秒前
笋蒸鱼发布了新的文献求助10
1秒前
1321完成签到,获得积分10
1秒前
huahua完成签到,获得积分10
1秒前
66应助马佳凯采纳,获得10
4秒前
林溪完成签到,获得积分10
4秒前
Amber应助CTX采纳,获得10
4秒前
lan完成签到 ,获得积分10
4秒前
共享精神应助Elaine采纳,获得10
6秒前
6秒前
安静一曲完成签到 ,获得积分10
6秒前
7秒前
完美世界应助嘎嘎顺利采纳,获得10
7秒前
崔靥完成签到,获得积分10
7秒前
8秒前
阿敏关注了科研通微信公众号
8秒前
一只绒可可完成签到,获得积分10
8秒前
CBY完成签到,获得积分10
8秒前
8秒前
QYPANG完成签到,获得积分10
9秒前
子时月完成签到,获得积分10
10秒前
脑洞疼应助xlx采纳,获得10
10秒前
jym完成签到,获得积分10
10秒前
10秒前
田様应助笑点低蜜蜂采纳,获得10
10秒前
今后应助乐观的一一采纳,获得10
11秒前
开朗向真完成签到,获得积分10
11秒前
11秒前
奋斗映寒发布了新的文献求助10
11秒前
梓榆发布了新的文献求助10
11秒前
帅气的沧海完成签到 ,获得积分10
11秒前
12秒前
FashionBoy应助包容的幻梅采纳,获得10
12秒前
12秒前
qaq完成签到,获得积分10
12秒前
12秒前
voyager完成签到,获得积分10
12秒前
勇敢肥猫发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740