A 3D boundary-guided hybrid network with convolutions and Transformers for lung tumor segmentation in CT images

分割 计算机科学 变压器 人工智能 肺肿瘤 边界(拓扑) 计算机视觉 模式识别(心理学) 放射科 医学 数学 物理 数学分析 内科学 电压 量子力学
作者
Hong Liu,Yuzhou Zhuang,Enmin Song,Yongde Liao,Guanchao Ye,Fan Yang,Xiangyang Xu,Xvhao Xiao,Chih‐Cheng Hung
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:180: 109009-109009 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.109009
摘要

-Accurate lung tumor segmentation from Computed Tomography (CT) scans is crucial for lung cancer diagnosis. Since the 2D methods lack the volumetric information of lung CT images, 3D convolution-based and Transformer-based methods have recently been applied in lung tumor segmentation tasks using CT imaging. However, most existing 3D methods cannot effectively collaborate the local patterns learned by convolutions with the global dependencies captured by Transformers, and widely ignore the important boundary information of lung tumors. To tackle these problems, we propose a 3D boundary-guided hybrid network using convolutions and Transformers for lung tumor segmentation, named BGHNet. In BGHNet, we first propose the Hybrid Local-Global Context Aggregation (HLGCA) module with parallel convolution and Transformer branches in the encoding phase. To aggregate local and global contexts in each branch of the HLGCA module, we not only design the Volumetric Cross-Stripe Window Transformer (VCSwin-Transformer) to build the Transformer branch with local inductive biases and large receptive fields, but also design the Volumetric Pyramid Convolution with transformer-based extensions (VPConvNeXt) to build the convolution branch with multi-scale global information. Then, we present a Boundary-Guided Feature Refinement (BGFR) module in the decoding phase, which explicitly leverages the boundary information to refine multi-stage decoding features for better performance. Extensive experiments were conducted on two lung tumor segmentation datasets, including a private dataset (HUST-Lung) and a public benchmark dataset (MSD-Lung). Results show that BGHNet outperforms other state-of-the-art 2D or 3D methods in our experiments, and it exhibits superior generalization performance in both non-contrast and contrast-enhanced CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QIULIN完成签到,获得积分10
刚刚
邓艳梅完成签到,获得积分10
刚刚
淀粉肠发布了新的文献求助10
1秒前
tan_sg发布了新的文献求助10
1秒前
激昂的南烟完成签到 ,获得积分10
2秒前
bfbdfbdf发布了新的文献求助10
2秒前
威武香水发布了新的文献求助10
2秒前
斯文败类应助容荣采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
Ava应助LSJ采纳,获得10
3秒前
852应助科研通管家采纳,获得30
3秒前
shinysparrow应助科研通管家采纳,获得200
3秒前
彭于晏应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
CAOHOU应助风中的丝袜采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
pinellode应助风中的丝袜采纳,获得10
5秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
Ava应助风中的丝袜采纳,获得10
5秒前
wdzz发布了新的文献求助10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
田様应助风中的丝袜采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113