A 3D boundary-guided hybrid network with convolutions and Transformers for lung tumor segmentation in CT images

分割 计算机科学 变压器 人工智能 肺肿瘤 边界(拓扑) 计算机视觉 模式识别(心理学) 放射科 医学 数学 物理 数学分析 内科学 电压 量子力学
作者
Hong Liu,Yuzhou Zhuang,Enmin Song,Yongde Liao,Guanchao Ye,Fan Yang,Xiangyang Xu,Xvhao Xiao,Chih‐Cheng Hung
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:180: 109009-109009 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.109009
摘要

-Accurate lung tumor segmentation from Computed Tomography (CT) scans is crucial for lung cancer diagnosis. Since the 2D methods lack the volumetric information of lung CT images, 3D convolution-based and Transformer-based methods have recently been applied in lung tumor segmentation tasks using CT imaging. However, most existing 3D methods cannot effectively collaborate the local patterns learned by convolutions with the global dependencies captured by Transformers, and widely ignore the important boundary information of lung tumors. To tackle these problems, we propose a 3D boundary-guided hybrid network using convolutions and Transformers for lung tumor segmentation, named BGHNet. In BGHNet, we first propose the Hybrid Local-Global Context Aggregation (HLGCA) module with parallel convolution and Transformer branches in the encoding phase. To aggregate local and global contexts in each branch of the HLGCA module, we not only design the Volumetric Cross-Stripe Window Transformer (VCSwin-Transformer) to build the Transformer branch with local inductive biases and large receptive fields, but also design the Volumetric Pyramid Convolution with transformer-based extensions (VPConvNeXt) to build the convolution branch with multi-scale global information. Then, we present a Boundary-Guided Feature Refinement (BGFR) module in the decoding phase, which explicitly leverages the boundary information to refine multi-stage decoding features for better performance. Extensive experiments were conducted on two lung tumor segmentation datasets, including a private dataset (HUST-Lung) and a public benchmark dataset (MSD-Lung). Results show that BGHNet outperforms other state-of-the-art 2D or 3D methods in our experiments, and it exhibits superior generalization performance in both non-contrast and contrast-enhanced CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whc完成签到,获得积分10
刚刚
1秒前
666发布了新的文献求助10
1秒前
芝士发布了新的文献求助10
1秒前
乙予安完成签到,获得积分10
1秒前
阳光的念寒完成签到,获得积分10
1秒前
1秒前
木易心完成签到,获得积分10
1秒前
ljw完成签到,获得积分10
2秒前
刘66666发布了新的文献求助10
2秒前
2秒前
婧年发布了新的文献求助10
2秒前
2秒前
Solitude_Z完成签到,获得积分10
3秒前
WW发布了新的文献求助10
3秒前
忧郁的沁发布了新的文献求助10
4秒前
4秒前
Yu发布了新的文献求助10
4秒前
哈哈完成签到,获得积分20
5秒前
愉快晟睿发布了新的文献求助10
5秒前
xiaochaoge发布了新的文献求助10
6秒前
善良傲晴完成签到,获得积分10
6秒前
Iloveyou发布了新的文献求助10
6秒前
Zzy完成签到,获得积分10
6秒前
我是老大应助XXGG采纳,获得10
6秒前
6秒前
我球呢完成签到,获得积分10
7秒前
7秒前
斯文败类应助ldkshifo采纳,获得30
8秒前
8秒前
8秒前
CodeCraft应助Fury采纳,获得10
8秒前
食杂砸发布了新的文献求助10
8秒前
SciGPT应助Yu采纳,获得10
8秒前
丘比特应助王小玉玉采纳,获得10
8秒前
xuo关注了科研通微信公众号
9秒前
俏皮的松鼠完成签到,获得积分10
9秒前
9秒前
君莫笑完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647375
求助须知:如何正确求助?哪些是违规求助? 4773416
关于积分的说明 15039107
捐赠科研通 4806115
什么是DOI,文献DOI怎么找? 2570108
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486055