A 3D boundary-guided hybrid network with convolutions and Transformers for lung tumor segmentation in CT images

分割 计算机科学 变压器 人工智能 肺肿瘤 边界(拓扑) 计算机视觉 模式识别(心理学) 放射科 医学 数学 物理 数学分析 内科学 电压 量子力学
作者
Hong Liu,Yuzhou Zhuang,Enmin Song,Yongde Liao,Guanchao Ye,Fan Yang,Xiangyang Xu,Xvhao Xiao,Chih‐Cheng Hung
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:180: 109009-109009 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.109009
摘要

-Accurate lung tumor segmentation from Computed Tomography (CT) scans is crucial for lung cancer diagnosis. Since the 2D methods lack the volumetric information of lung CT images, 3D convolution-based and Transformer-based methods have recently been applied in lung tumor segmentation tasks using CT imaging. However, most existing 3D methods cannot effectively collaborate the local patterns learned by convolutions with the global dependencies captured by Transformers, and widely ignore the important boundary information of lung tumors. To tackle these problems, we propose a 3D boundary-guided hybrid network using convolutions and Transformers for lung tumor segmentation, named BGHNet. In BGHNet, we first propose the Hybrid Local-Global Context Aggregation (HLGCA) module with parallel convolution and Transformer branches in the encoding phase. To aggregate local and global contexts in each branch of the HLGCA module, we not only design the Volumetric Cross-Stripe Window Transformer (VCSwin-Transformer) to build the Transformer branch with local inductive biases and large receptive fields, but also design the Volumetric Pyramid Convolution with transformer-based extensions (VPConvNeXt) to build the convolution branch with multi-scale global information. Then, we present a Boundary-Guided Feature Refinement (BGFR) module in the decoding phase, which explicitly leverages the boundary information to refine multi-stage decoding features for better performance. Extensive experiments were conducted on two lung tumor segmentation datasets, including a private dataset (HUST-Lung) and a public benchmark dataset (MSD-Lung). Results show that BGHNet outperforms other state-of-the-art 2D or 3D methods in our experiments, and it exhibits superior generalization performance in both non-contrast and contrast-enhanced CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
1秒前
高高的书本完成签到 ,获得积分10
1秒前
1秒前
2秒前
脑洞疼应助xiao采纳,获得10
2秒前
Dylan发布了新的文献求助10
2秒前
2秒前
old赵应助小虎采纳,获得10
4秒前
wsysweet发布了新的文献求助10
4秒前
Hello应助heyheybaby采纳,获得10
4秒前
5秒前
hyw发布了新的文献求助80
6秒前
tzr应助怕孤独的苑博采纳,获得10
8秒前
qvb完成签到 ,获得积分10
8秒前
8秒前
可靠的芒果完成签到,获得积分10
9秒前
柔弱雅彤发布了新的文献求助10
9秒前
可爱的函函应助初一采纳,获得10
10秒前
10秒前
11秒前
个性的紫菜应助JIAN采纳,获得10
11秒前
旭东静静发布了新的文献求助10
12秒前
13秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
pp发布了新的文献求助10
16秒前
16秒前
未转头时皆梦完成签到,获得积分10
16秒前
脑洞疼应助hankpotter采纳,获得10
17秒前
SciGPT应助xiaoyuzi采纳,获得20
17秒前
芮rich完成签到,获得积分10
17秒前
a379896033完成签到 ,获得积分10
18秒前
望TIAN完成签到,获得积分10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106