分割
计算机科学
变压器
人工智能
肺肿瘤
边界(拓扑)
肺
计算机视觉
模式识别(心理学)
放射科
医学
数学
物理
电压
数学分析
量子力学
内科学
作者
Hong Liu,Yuzhou Zhuang,Enmin Song,Yongde Liao,Guanchao Ye,Fan Yang,Xiangyang Xu,Xvhao Xiao,Chih‐Cheng Hung
标识
DOI:10.1016/j.compbiomed.2024.109009
摘要
-Accurate lung tumor segmentation from Computed Tomography (CT) scans is crucial for lung cancer diagnosis. Since the 2D methods lack the volumetric information of lung CT images, 3D convolution-based and Transformer-based methods have recently been applied in lung tumor segmentation tasks using CT imaging. However, most existing 3D methods cannot effectively collaborate the local patterns learned by convolutions with the global dependencies captured by Transformers, and widely ignore the important boundary information of lung tumors. To tackle these problems, we propose a 3D boundary-guided hybrid network using convolutions and Transformers for lung tumor segmentation, named BGHNet. In BGHNet, we first propose the Hybrid Local-Global Context Aggregation (HLGCA) module with parallel convolution and Transformer branches in the encoding phase. To aggregate local and global contexts in each branch of the HLGCA module, we not only design the Volumetric Cross-Stripe Window Transformer (VCSwin-Transformer) to build the Transformer branch with local inductive biases and large receptive fields, but also design the Volumetric Pyramid Convolution with transformer-based extensions (VPConvNeXt) to build the convolution branch with multi-scale global information. Then, we present a Boundary-Guided Feature Refinement (BGFR) module in the decoding phase, which explicitly leverages the boundary information to refine multi-stage decoding features for better performance. Extensive experiments were conducted on two lung tumor segmentation datasets, including a private dataset (HUST-Lung) and a public benchmark dataset (MSD-Lung). Results show that BGHNet outperforms other state-of-the-art 2D or 3D methods in our experiments, and it exhibits superior generalization performance in both non-contrast and contrast-enhanced CT scans.
科研通智能强力驱动
Strongly Powered by AbleSci AI