亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A 3D boundary-guided hybrid network with convolutions and Transformers for lung tumor segmentation in CT images

分割 计算机科学 变压器 人工智能 肺肿瘤 边界(拓扑) 计算机视觉 模式识别(心理学) 放射科 医学 数学 物理 数学分析 内科学 电压 量子力学
作者
Hong Liu,Yuzhou Zhuang,Enmin Song,Yongde Liao,Guanchao Ye,Fan Yang,Xiangyang Xu,Xvhao Xiao,Chih‐Cheng Hung
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:180: 109009-109009 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.109009
摘要

-Accurate lung tumor segmentation from Computed Tomography (CT) scans is crucial for lung cancer diagnosis. Since the 2D methods lack the volumetric information of lung CT images, 3D convolution-based and Transformer-based methods have recently been applied in lung tumor segmentation tasks using CT imaging. However, most existing 3D methods cannot effectively collaborate the local patterns learned by convolutions with the global dependencies captured by Transformers, and widely ignore the important boundary information of lung tumors. To tackle these problems, we propose a 3D boundary-guided hybrid network using convolutions and Transformers for lung tumor segmentation, named BGHNet. In BGHNet, we first propose the Hybrid Local-Global Context Aggregation (HLGCA) module with parallel convolution and Transformer branches in the encoding phase. To aggregate local and global contexts in each branch of the HLGCA module, we not only design the Volumetric Cross-Stripe Window Transformer (VCSwin-Transformer) to build the Transformer branch with local inductive biases and large receptive fields, but also design the Volumetric Pyramid Convolution with transformer-based extensions (VPConvNeXt) to build the convolution branch with multi-scale global information. Then, we present a Boundary-Guided Feature Refinement (BGFR) module in the decoding phase, which explicitly leverages the boundary information to refine multi-stage decoding features for better performance. Extensive experiments were conducted on two lung tumor segmentation datasets, including a private dataset (HUST-Lung) and a public benchmark dataset (MSD-Lung). Results show that BGHNet outperforms other state-of-the-art 2D or 3D methods in our experiments, and it exhibits superior generalization performance in both non-contrast and contrast-enhanced CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静的安青完成签到,获得积分10
12秒前
yangbohhan发布了新的文献求助10
16秒前
bkagyin应助三口一头猪采纳,获得10
25秒前
JrPaleo101完成签到,获得积分10
31秒前
57秒前
1分钟前
1分钟前
热心愫发布了新的文献求助30
1分钟前
苏震坤发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
热心愫完成签到,获得积分20
3分钟前
3分钟前
3分钟前
爱弥儿发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
快乐小狗完成签到 ,获得积分10
3分钟前
4分钟前
菠萝发布了新的文献求助10
4分钟前
满意的伊完成签到,获得积分10
4分钟前
ttxxcdx完成签到 ,获得积分10
4分钟前
越野完成签到 ,获得积分10
4分钟前
4分钟前
wanci应助yangbohhan采纳,获得10
4分钟前
苏震坤发布了新的文献求助10
4分钟前
4分钟前
yindi1991完成签到 ,获得积分10
4分钟前
yangbohhan发布了新的文献求助10
5分钟前
丘比特应助yangbo666采纳,获得10
5分钟前
可爱的函函应助cc采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
赘婿应助PPD采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
苏震坤发布了新的文献求助10
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611441
求助须知:如何正确求助?哪些是违规求助? 4016962
关于积分的说明 12435927
捐赠科研通 3698837
什么是DOI,文献DOI怎么找? 2039748
邀请新用户注册赠送积分活动 1072548
科研通“疑难数据库(出版商)”最低求助积分说明 956235