Machine learning classification of functional neurological disorder using structural brain MRI features

医学 萧条(经济学) 中央前回 焦虑 转换障碍 内科学 听力学 心理学 精神科 磁共振成像 放射科 宏观经济学 经济
作者
Christiana Westlin,A Guthrie,Sara Paredes-Echeverri,Julie Maggio,Sara A. Finkelstein,Ellen Godena,Daniel Millstein,Julie MacLean,Jessica Ranford,Jennifer Freeburn,Caitlin Adams,Christopher D. Stephen,Ibai Díez,David L. Perez
出处
期刊:Journal of Neurology, Neurosurgery, and Psychiatry [BMJ]
卷期号:: jnnp-333499 被引量:7
标识
DOI:10.1136/jnnp-2024-333499
摘要

Background Brain imaging studies investigating grey matter in functional neurological disorder (FND) have used univariate approaches to report group-level differences compared with healthy controls (HCs). However, these findings have limited translatability because they do not differentiate patients from controls at the individual-level. Methods 183 participants were prospectively recruited across three groups: 61 patients with mixed FND (FND-mixed), 61 age-matched and sex-matched HCs and 61 age, sex, depression and anxiety-matched psychiatric controls (PCs). Radial basis function support vector machine classifiers with cross-validation were used to distinguish individuals with FND from HCs and PCs using 134 FreeSurfer -derived grey matter MRI features. Results Patients with FND-mixed were differentiated from HCs with an accuracy of 0.66 (p=0.005; area under the receiving operating characteristic (AUROC)=0.74); this sample was also distinguished from PCs with an accuracy of 0.60 (p=0.038; AUROC=0.56). When focusing on the functional motor disorder subtype (FND-motor, n=46), a classifier robustly differentiated these patients from HCs (accuracy=0.72; p=0.002; AUROC=0.80). FND-motor could not be distinguished from PCs, and the functional seizures subtype (n=23) could not be classified against either control group. Important regions contributing to statistically significant multivariate classifications included the cingulate gyrus, hippocampal subfields and amygdalar nuclei. Correctly versus incorrectly classified participants did not differ across a range of tested psychometric variables. Conclusions These findings underscore the interconnection of brain structure and function in the pathophysiology of FND and demonstrate the feasibility of using structural MRI to classify the disorder. Out-of-sample replication and larger-scale classifier efforts incorporating psychiatric and neurological controls are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助vinni采纳,获得10
刚刚
刚刚
浮游应助冷静惜文采纳,获得10
1秒前
Feliciti发布了新的文献求助10
2秒前
3秒前
啤酒半斤发布了新的文献求助30
3秒前
liwanr发布了新的文献求助30
6秒前
allanqiao发布了新的文献求助200
6秒前
7秒前
COSMAO应助jj采纳,获得10
8秒前
CodeCraft应助Link采纳,获得30
10秒前
10秒前
11秒前
和谐亦瑶完成签到,获得积分10
11秒前
苹果白凡发布了新的文献求助10
12秒前
13秒前
tree发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
我是老大应助时尚青柏采纳,获得30
17秒前
王某发布了新的文献求助10
17秒前
深情安青应助菠萝吹雪采纳,获得10
17秒前
王博涵发布了新的文献求助10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
imnotwinter完成签到,获得积分10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
黄三金应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得10
20秒前
20秒前
Owen应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4962637
求助须知:如何正确求助?哪些是违规求助? 4222597
关于积分的说明 13151124
捐赠科研通 4006734
什么是DOI,文献DOI怎么找? 2193187
邀请新用户注册赠送积分活动 1206804
关于科研通互助平台的介绍 1119051