Optimizing Robotic Mobile Fulfillment Systems for Order Picking Based on Deep Reinforcement Learning

强化学习 计算机科学 人工智能 钢筋 订单(交换) 人机交互 工程类 财务 结构工程 经济
作者
Zhenyi Zhu,Sai Wang,Tuan‐Tuan Wang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (14): 4713-4713 被引量:1
标识
DOI:10.3390/s24144713
摘要

Robotic Mobile Fulfillment Systems (RMFSs) face challenges in handling large-scale orders and navigating complex environments, frequently encountering a series of intricate decision-making problems, such as order allocation, shelf selection, and robot scheduling. To address these challenges, this paper integrates Deep Reinforcement Learning (DRL) technology into an RMFS, to meet the needs of efficient order processing and system stability. This study focuses on three key stages of RMFSs: order allocation and sorting, shelf selection, and coordinated robot scheduling. For each stage, mathematical models are established and the corresponding solutions are proposed. Unlike traditional methods, DRL technology is introduced to solve these problems, utilizing a Genetic Algorithm and Ant Colony Optimization to handle decision making related to large-scale orders. Through simulation experiments, performance indicators-such as shelf access frequency and the total processing time of the RMFS-are evaluated. The experimental results demonstrate that, compared to traditional methods, our algorithms excel in handling large-scale orders, showcasing exceptional superiority, capable of completing approximately 110 tasks within an hour. Future research should focus on integrated decision-making modeling for each stage of RMFSs and designing efficient heuristic algorithms for large-scale problems, to further enhance system performance and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助ff采纳,获得10
刚刚
DHW1703701完成签到 ,获得积分10
1秒前
薄荷香菜汁完成签到,获得积分10
1秒前
民工发布了新的文献求助10
2秒前
2秒前
斟星完成签到,获得积分10
3秒前
wuxxxx完成签到,获得积分20
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
嘿嘿嘿完成签到,获得积分10
6秒前
6秒前
落幕熊猫完成签到,获得积分10
7秒前
遇上就这样吧应助是的哇采纳,获得10
8秒前
无心的天薇完成签到,获得积分10
8秒前
希望天下0贩的0应助sue采纳,获得100
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
伶俐雪曼完成签到 ,获得积分10
11秒前
11秒前
zyb完成签到,获得积分10
11秒前
gatts发布了新的文献求助10
11秒前
11秒前
李爱国应助sill采纳,获得30
12秒前
呱牛完成签到,获得积分10
13秒前
13秒前
14秒前
新野发布了新的文献求助10
14秒前
15秒前
JamesPei应助FOLY采纳,获得10
15秒前
ypx完成签到,获得积分10
15秒前
sibo完成签到,获得积分10
15秒前
静不净发布了新的文献求助10
16秒前
DENG完成签到,获得积分10
16秒前
16秒前
科研通AI5应助fff采纳,获得10
16秒前
17秒前
爆米花应助悲凉的溪流采纳,获得10
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771