Exploring the spatial patterns of landslide susceptibility assessment using interpretable Shapley method: Mechanisms of landslide formation in the Sichuan-Tibet region

山崩 可解释性 地质学 支持向量机 特征(语言学) 随机森林 空间分布 地图学 地震学 机器学习 遥感 地理 计算机科学 语言学 哲学
作者
Jichao Lv,Rui Zhang,Age Shama,Ruikai Hong,Xu He,Renzhe Wu,Xin Bao,Guoxiang Liu
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:366: 121921-121921 被引量:6
标识
DOI:10.1016/j.jenvman.2024.121921
摘要

Machine learning models are often viewed as black boxes in landslide susceptibility assessment, lacking an analysis of how input features predict outcomes. This makes it challenging to understand the mechanisms and key factors behind landslides. To enhance the interpretability of machine learning models in wide-area landslide susceptibility assessments, this study uses the Shapely method to explore the contributions of feature factors from local, global, and spatial perspectives. Landslide susceptibility assessments were conducted using random forest (RF), support vector machine (SVM), and eXtreme Gradient Boosting (XGBoost) models, focusing on the geologically complex Sichuan-Tibet region. Initially, the study revealed the contributions of specific key feature factors to landslides from a local perspective. It then examines the overall impact of interactions among feature factors on landslide occurrence globally. Finally, it unveils the spatial distribution patterns of the contributions of various feature factors to landslide occurrence. The analysis indicates the following: (1) The XGBoost model excels in landslide susceptibility assessment, achieving accuracy, precision, recall, F1-score, and AUC values of 0.7815, 0.7858, 0.7962, 0.7910, and 0.86, respectively; (2) The Shapely method identifies the leading factors for landslides in the Sichuan-Tibet region as Elevation (3000-4000 m), PGA (1-2 g), NDVI (<0.5), and distance to rivers (<3 km); (3) Using the Shapely method, the study explains the contributions, interaction mechanisms, and spatial distribution patterns of landslide susceptibility feature factors across local, global, and spatial perspectives. These findings offer new avenues and methods for the in-depth exploration and scientific prediction of landslide risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zency完成签到,获得积分10
刚刚
田様应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
刚刚
情怀应助科研通管家采纳,获得20
刚刚
刚刚
今后应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
1秒前
1秒前
xiaozhao完成签到,获得积分10
1秒前
唐唐发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
跳跃稀完成签到,获得积分10
3秒前
虾仁发布了新的文献求助10
4秒前
4秒前
罗海发布了新的文献求助20
4秒前
ych完成签到,获得积分10
5秒前
秋寒松完成签到,获得积分10
5秒前
GuangChe应助简单的大哥采纳,获得50
5秒前
Kin_L发布了新的文献求助10
6秒前
Eazin发布了新的文献求助10
6秒前
星辰大海应助MAOJCFK采纳,获得10
6秒前
佩奇rachel关注了科研通微信公众号
6秒前
豆豆完成签到 ,获得积分10
7秒前
搜集达人应助scccc采纳,获得10
9秒前
Yaaaaaa发布了新的文献求助30
9秒前
M跃发布了新的文献求助10
9秒前
CipherSage应助刘国建郭菱香采纳,获得10
9秒前
10秒前
开心夜云完成签到,获得积分10
10秒前
bigchui完成签到,获得积分10
11秒前
Shale完成签到,获得积分10
11秒前
情怀应助冷艳的孤晴采纳,获得10
11秒前
嵩嵩发布了新的文献求助20
11秒前
13秒前
真实的天蓉完成签到,获得积分20
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751