Exploring the spatial patterns of landslide susceptibility assessment using interpretable Shapley method: Mechanisms of landslide formation in the Sichuan-Tibet region

山崩 可解释性 地质学 支持向量机 特征(语言学) 随机森林 空间分布 地图学 地震学 机器学习 遥感 地理 计算机科学 语言学 哲学
作者
Jichao Lv,Rui Zhang,Age Shama,Ruikai Hong,Xu He,Renzhe Wu,Xin Bao,Guoxiang Liu
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:366: 121921-121921 被引量:6
标识
DOI:10.1016/j.jenvman.2024.121921
摘要

Machine learning models are often viewed as black boxes in landslide susceptibility assessment, lacking an analysis of how input features predict outcomes. This makes it challenging to understand the mechanisms and key factors behind landslides. To enhance the interpretability of machine learning models in wide-area landslide susceptibility assessments, this study uses the Shapely method to explore the contributions of feature factors from local, global, and spatial perspectives. Landslide susceptibility assessments were conducted using random forest (RF), support vector machine (SVM), and eXtreme Gradient Boosting (XGBoost) models, focusing on the geologically complex Sichuan-Tibet region. Initially, the study revealed the contributions of specific key feature factors to landslides from a local perspective. It then examines the overall impact of interactions among feature factors on landslide occurrence globally. Finally, it unveils the spatial distribution patterns of the contributions of various feature factors to landslide occurrence. The analysis indicates the following: (1) The XGBoost model excels in landslide susceptibility assessment, achieving accuracy, precision, recall, F1-score, and AUC values of 0.7815, 0.7858, 0.7962, 0.7910, and 0.86, respectively; (2) The Shapely method identifies the leading factors for landslides in the Sichuan-Tibet region as Elevation (3000-4000 m), PGA (1-2 g), NDVI (<0.5), and distance to rivers (<3 km); (3) Using the Shapely method, the study explains the contributions, interaction mechanisms, and spatial distribution patterns of landslide susceptibility feature factors across local, global, and spatial perspectives. These findings offer new avenues and methods for the in-depth exploration and scientific prediction of landslide risks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
崔尔蓉完成签到,获得积分10
1秒前
aa发布了新的文献求助10
3秒前
4秒前
西梅发布了新的文献求助10
5秒前
7秒前
暖冬22发布了新的文献求助10
7秒前
景穆完成签到,获得积分10
8秒前
8秒前
仁仁仁完成签到,获得积分10
9秒前
9秒前
10秒前
coco完成签到,获得积分20
10秒前
完美世界应助lulu采纳,获得10
11秒前
xz完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得20
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
12秒前
Orange应助科研通管家采纳,获得10
12秒前
Livrik发布了新的文献求助10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
ltxinanjiao发布了新的文献求助10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
义气千风发布了新的文献求助10
12秒前
liubo发布了新的文献求助10
12秒前
coco发布了新的文献求助10
13秒前
星野发布了新的文献求助10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
xuan应助科研通管家采纳,获得100
13秒前
liuteng完成签到,获得积分10
13秒前
浮游应助科研通管家采纳,获得20
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227238
求助须知:如何正确求助?哪些是违规求助? 4398359
关于积分的说明 13689318
捐赠科研通 4263055
什么是DOI,文献DOI怎么找? 2339509
邀请新用户注册赠送积分活动 1336803
关于科研通互助平台的介绍 1292920