Fabric defect detection based on feature enhancement and complementary neighboring information

特征(语言学) 计算机科学 模式识别(心理学) 人工智能 语言学 哲学
作者
Guohua Liu,Changrui Guo,Haiyang Lian
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105409-105409
标识
DOI:10.1088/1361-6501/ad60eb
摘要

Abstract Fabric defect detection is a crucial aspect of quality control in the textile industry. Given the complexities of fabric backgrounds, the high similarity between patterned backgrounds and defects, and the variety of defect scales, we propose a fabric defect detection method based on feature enhancement and complementary neighboring information. The core of this method lies in two main components: the feature enhancement module and the neighboring information complementation strategy. The feature enhancement module includes two sub-modules: similarity feature enhancement (SFE) and edge detail feature enhancement (EDFE). The SFE aims to capture the similarities between features to strengthen the distinction between defects and complex backgrounds, thereby highlighting the correlations among defects and the differences between defects and the background. The EDFE focuses on improving the network’s ability to capture the edge details of fabrics, preventing edge information from becoming blurred or lost due to deeper network layers. The neighboring information complementation strategy consists of shallow-level information complementation (SLIC) and top-down information fusion complementation (TDIFC). The SLIC integrates newly introduced shallow features with neighboring features that have a smaller semantic gap, injecting richer detail information into the network. The TDIFC adaptively guides the interaction of information between adjacent feature maps, effectively aggregating multi-scale features to ensure information complementarity between features of different scales. Additionally, to further optimize model performance, we introduced partial convolution (Pconv) in the backbone of the feature extraction network. Pconv reduces redundant computations and decreases the model’s parameter count. Experimental results show that our proposed method achieved an mAP@50 of 82.4%, which is a 6.6% improvement over the baseline model YOLOv8s. The average inference frame rate reached 61.8 FPS, meeting the real-time detection requirements for fabric defects. Moreover, the model demonstrated good generalization capabilities, effectively adapting to detecting defects in different types and colors of fabrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
MHM完成签到,获得积分10
1秒前
真实的亦竹完成签到,获得积分20
1秒前
2秒前
打打应助擅长i采纳,获得10
2秒前
2秒前
wanci应助啊啊啊啊采纳,获得10
2秒前
2秒前
SYLH应助Amberstone1采纳,获得10
3秒前
BrooklynFy发布了新的文献求助10
3秒前
SciGPT应助super采纳,获得10
3秒前
3秒前
4秒前
4秒前
王甜甜完成签到,获得积分10
5秒前
可爱的函函应助乐乐乐采纳,获得10
5秒前
SYLH应助大气糖豆采纳,获得10
5秒前
5秒前
科研通AI2S应助电闪采纳,获得10
6秒前
xavier完成签到,获得积分10
7秒前
酷酷语兰完成签到,获得积分10
8秒前
8秒前
tangt完成签到,获得积分10
8秒前
kedaya应助thx采纳,获得40
8秒前
fusheng发布了新的文献求助10
8秒前
王甜甜发布了新的文献求助10
9秒前
柔弱云朵完成签到,获得积分10
9秒前
10秒前
酷波er应助擅长i采纳,获得10
10秒前
10秒前
11秒前
风中的棒棒糖完成签到,获得积分10
12秒前
火星上含芙完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
bkagyin应助拉格朗日柴犬采纳,获得10
14秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271