亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fabric defect detection based on feature enhancement and complementary neighboring information

特征(语言学) 计算机科学 模式识别(心理学) 人工智能 哲学 语言学
作者
Guohua Liu,Changrui Guo,Haiyang Lian
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105409-105409
标识
DOI:10.1088/1361-6501/ad60eb
摘要

Abstract Fabric defect detection is a crucial aspect of quality control in the textile industry. Given the complexities of fabric backgrounds, the high similarity between patterned backgrounds and defects, and the variety of defect scales, we propose a fabric defect detection method based on feature enhancement and complementary neighboring information. The core of this method lies in two main components: the feature enhancement module and the neighboring information complementation strategy. The feature enhancement module includes two sub-modules: similarity feature enhancement (SFE) and edge detail feature enhancement (EDFE). The SFE aims to capture the similarities between features to strengthen the distinction between defects and complex backgrounds, thereby highlighting the correlations among defects and the differences between defects and the background. The EDFE focuses on improving the network’s ability to capture the edge details of fabrics, preventing edge information from becoming blurred or lost due to deeper network layers. The neighboring information complementation strategy consists of shallow-level information complementation (SLIC) and top-down information fusion complementation (TDIFC). The SLIC integrates newly introduced shallow features with neighboring features that have a smaller semantic gap, injecting richer detail information into the network. The TDIFC adaptively guides the interaction of information between adjacent feature maps, effectively aggregating multi-scale features to ensure information complementarity between features of different scales. Additionally, to further optimize model performance, we introduced partial convolution (Pconv) in the backbone of the feature extraction network. Pconv reduces redundant computations and decreases the model’s parameter count. Experimental results show that our proposed method achieved an mAP@50 of 82.4%, which is a 6.6% improvement over the baseline model YOLOv8s. The average inference frame rate reached 61.8 FPS, meeting the real-time detection requirements for fabric defects. Moreover, the model demonstrated good generalization capabilities, effectively adapting to detecting defects in different types and colors of fabrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肉丸完成签到 ,获得积分10
2秒前
科研通AI2S应助如意歌曲采纳,获得10
2秒前
徐小锤完成签到 ,获得积分10
3秒前
6秒前
9秒前
13秒前
qingxinhuo完成签到 ,获得积分10
19秒前
科研通AI2S应助陈杰采纳,获得10
21秒前
27秒前
wuye发布了新的文献求助10
27秒前
李小猫完成签到,获得积分10
30秒前
李小猫发布了新的文献求助10
34秒前
34秒前
36秒前
Loukas完成签到 ,获得积分10
38秒前
PAIDAXXXX发布了新的文献求助10
38秒前
40秒前
40秒前
42秒前
hahahan完成签到 ,获得积分10
44秒前
Ethan应助科研通管家采纳,获得10
47秒前
研友_VZG7GZ应助科研通管家采纳,获得10
47秒前
情怀应助科研通管家采纳,获得10
47秒前
53秒前
ddd发布了新的文献求助10
54秒前
55秒前
轻松戎完成签到,获得积分10
55秒前
56秒前
ddd完成签到,获得积分10
1分钟前
heyunhua23完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
dilmurat10发布了新的文献求助10
1分钟前
1分钟前
香蕉味大辣条完成签到,获得积分10
1分钟前
Dr完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229656
求助须知:如何正确求助?哪些是违规求助? 2877200
关于积分的说明 8198471
捐赠科研通 2544654
什么是DOI,文献DOI怎么找? 1374517
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621774