已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fabric defect detection based on feature enhancement and complementary neighboring information

特征(语言学) 计算机科学 模式识别(心理学) 人工智能 哲学 语言学
作者
Guohua Liu,Changrui Guo,Haiyang Lian
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105409-105409 被引量:2
标识
DOI:10.1088/1361-6501/ad60eb
摘要

Abstract Fabric defect detection is a crucial aspect of quality control in the textile industry. Given the complexities of fabric backgrounds, the high similarity between patterned backgrounds and defects, and the variety of defect scales, we propose a fabric defect detection method based on feature enhancement and complementary neighboring information. The core of this method lies in two main components: the feature enhancement module and the neighboring information complementation strategy. The feature enhancement module includes two sub-modules: similarity feature enhancement (SFE) and edge detail feature enhancement (EDFE). The SFE aims to capture the similarities between features to strengthen the distinction between defects and complex backgrounds, thereby highlighting the correlations among defects and the differences between defects and the background. The EDFE focuses on improving the network’s ability to capture the edge details of fabrics, preventing edge information from becoming blurred or lost due to deeper network layers. The neighboring information complementation strategy consists of shallow-level information complementation (SLIC) and top-down information fusion complementation (TDIFC). The SLIC integrates newly introduced shallow features with neighboring features that have a smaller semantic gap, injecting richer detail information into the network. The TDIFC adaptively guides the interaction of information between adjacent feature maps, effectively aggregating multi-scale features to ensure information complementarity between features of different scales. Additionally, to further optimize model performance, we introduced partial convolution (Pconv) in the backbone of the feature extraction network. Pconv reduces redundant computations and decreases the model’s parameter count. Experimental results show that our proposed method achieved an mAP@50 of 82.4%, which is a 6.6% improvement over the baseline model YOLOv8s. The average inference frame rate reached 61.8 FPS, meeting the real-time detection requirements for fabric defects. Moreover, the model demonstrated good generalization capabilities, effectively adapting to detecting defects in different types and colors of fabrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花开富贵完成签到 ,获得积分10
2秒前
AuB发布了新的文献求助10
3秒前
8秒前
卑微学术人完成签到 ,获得积分10
10秒前
elain完成签到 ,获得积分10
10秒前
Yuanyuan发布了新的文献求助10
13秒前
bkagyin应助Amanda采纳,获得10
15秒前
Debra完成签到,获得积分10
17秒前
风趣的芝麻完成签到 ,获得积分10
19秒前
20秒前
22秒前
Isla完成签到,获得积分10
22秒前
含蓄含双完成签到,获得积分20
23秒前
keep完成签到 ,获得积分10
24秒前
花开hhhhhhh完成签到,获得积分10
24秒前
陶醉的蜜蜂完成签到 ,获得积分10
24秒前
渭阳野士完成签到,获得积分10
25秒前
雨葭完成签到,获得积分10
25秒前
skdfz168完成签到 ,获得积分10
28秒前
28秒前
145263发布了新的文献求助10
28秒前
29秒前
沈澜完成签到 ,获得积分10
30秒前
txy完成签到,获得积分10
33秒前
心酒为友发布了新的文献求助10
34秒前
149865完成签到,获得积分10
35秒前
38秒前
繁星长明应助科研通管家采纳,获得10
38秒前
38秒前
情怀应助科研通管家采纳,获得10
38秒前
繁星长明应助科研通管家采纳,获得10
38秒前
程晓研完成签到 ,获得积分10
38秒前
情怀应助科研通管家采纳,获得10
38秒前
bkagyin应助科研通管家采纳,获得10
38秒前
38秒前
Momomo应助科研通管家采纳,获得10
39秒前
小马甲应助科研通管家采纳,获得10
39秒前
ZYK发布了新的文献求助10
40秒前
145263完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731326
求助须知:如何正确求助?哪些是违规求助? 5329439
关于积分的说明 15320825
捐赠科研通 4877424
什么是DOI,文献DOI怎么找? 2620300
邀请新用户注册赠送积分活动 1569578
关于科研通互助平台的介绍 1526057