Fabric defect detection based on feature enhancement and complementary neighboring information

特征(语言学) 计算机科学 模式识别(心理学) 人工智能 语言学 哲学
作者
Guohua Liu,Changrui Guo,Haiyang Lian
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105409-105409 被引量:2
标识
DOI:10.1088/1361-6501/ad60eb
摘要

Abstract Fabric defect detection is a crucial aspect of quality control in the textile industry. Given the complexities of fabric backgrounds, the high similarity between patterned backgrounds and defects, and the variety of defect scales, we propose a fabric defect detection method based on feature enhancement and complementary neighboring information. The core of this method lies in two main components: the feature enhancement module and the neighboring information complementation strategy. The feature enhancement module includes two sub-modules: similarity feature enhancement (SFE) and edge detail feature enhancement (EDFE). The SFE aims to capture the similarities between features to strengthen the distinction between defects and complex backgrounds, thereby highlighting the correlations among defects and the differences between defects and the background. The EDFE focuses on improving the network’s ability to capture the edge details of fabrics, preventing edge information from becoming blurred or lost due to deeper network layers. The neighboring information complementation strategy consists of shallow-level information complementation (SLIC) and top-down information fusion complementation (TDIFC). The SLIC integrates newly introduced shallow features with neighboring features that have a smaller semantic gap, injecting richer detail information into the network. The TDIFC adaptively guides the interaction of information between adjacent feature maps, effectively aggregating multi-scale features to ensure information complementarity between features of different scales. Additionally, to further optimize model performance, we introduced partial convolution (Pconv) in the backbone of the feature extraction network. Pconv reduces redundant computations and decreases the model’s parameter count. Experimental results show that our proposed method achieved an mAP@50 of 82.4%, which is a 6.6% improvement over the baseline model YOLOv8s. The average inference frame rate reached 61.8 FPS, meeting the real-time detection requirements for fabric defects. Moreover, the model demonstrated good generalization capabilities, effectively adapting to detecting defects in different types and colors of fabrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一减完成签到 ,获得积分10
刚刚
wang完成签到,获得积分10
1秒前
邪恶西瓜皮完成签到,获得积分10
1秒前
1秒前
1秒前
小马甲应助whisper采纳,获得30
1秒前
白泽发布了新的文献求助10
1秒前
2秒前
2秒前
蛋妞发布了新的文献求助10
2秒前
嘟嘟发布了新的文献求助10
2秒前
可可完成签到,获得积分10
3秒前
3秒前
3秒前
自然月亮发布了新的文献求助10
4秒前
5秒前
完美世界应助顺利的慕儿采纳,获得10
5秒前
5秒前
5秒前
科研通AI5应助屈春洋采纳,获得10
5秒前
热心又蓝完成签到,获得积分10
6秒前
李龙发布了新的文献求助10
6秒前
6秒前
6秒前
粗心的半鬼完成签到,获得积分10
6秒前
7秒前
7秒前
pw完成签到,获得积分10
7秒前
7秒前
8秒前
情怀应助次次实验次次成采纳,获得10
8秒前
奇博士发布了新的文献求助10
8秒前
在水一方应助山与采纳,获得10
8秒前
8秒前
月落无痕2025完成签到,获得积分10
8秒前
wang发布了新的文献求助10
9秒前
DDD发布了新的文献求助10
9秒前
9秒前
科研通AI5应助laojian采纳,获得10
9秒前
小jia发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071167
求助须知:如何正确求助?哪些是违规求助? 4292013
关于积分的说明 13372748
捐赠科研通 4112513
什么是DOI,文献DOI怎么找? 2252022
邀请新用户注册赠送积分活动 1257123
关于科研通互助平台的介绍 1189843