A Key Node Mining Method Based on K-Shell and Neighborhood Information

节点(物理) 中心性 计算机科学 数据挖掘 钥匙(锁) 聚类分析 复杂网络 职位(财务) 聚类系数 领域(数学) 人工智能 数学 工程类 万维网 计算机安全 结构工程 财务 组合数学 纯数学 经济
作者
Na Zhao,Qingchun Feng,Hao Wang,Ming Jing,Zhiyu Lin,Jian Wang
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (14): 6012-6012
标识
DOI:10.3390/app14146012
摘要

Mining key nodes in complex networks has always been a promising research direction in the field of complex networks. Many precise methods proposed by researchers for mining influential special nodes in networks have been widely applied in a plethora of fields. However, some important node-mining methods often use the degree as a node attribute indicator for evaluating node importance, while the clustering coefficient, as an important attribute of nodes, is rarely utilized. Some methods only consider the global position of nodes in the network while ignoring the local structural information of nodes in special positions and the network. Hence, this paper introduces a novel node centrality method, KCH. The KCH method leverages K-shell to identify the global position of nodes and assists in evaluating the importance of nodes by combining information such as structural holes and local clustering coefficients of first-order neighborhoods. This integrated approach yields an enhanced performance compared to existing methods. We conducted experiments on connectivity, monotonicity, and zero models on 10 networks to evaluate the performance of KCH. The experiments revealed that when compared to the collective influence baseline methods, such as social capital and hierarchical K-shell, the KCH method exhibited superior capabilities in terms of collective influence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助小分队采纳,获得10
刚刚
2秒前
高大的冰双完成签到,获得积分10
2秒前
zzm完成签到,获得积分10
2秒前
刚国忠发布了新的文献求助10
2秒前
3秒前
3秒前
yxy完成签到,获得积分10
3秒前
Owen应助芋泥桃桃采纳,获得10
3秒前
4秒前
蝉鸣一夏发布了新的文献求助10
4秒前
liulu完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
yzm完成签到,获得积分10
6秒前
Jeson完成签到,获得积分0
7秒前
魔丸发布了新的文献求助10
7秒前
7秒前
8秒前
机灵的波比应助Mr.Ren采纳,获得10
8秒前
加速度完成签到,获得积分10
8秒前
QRE发布了新的文献求助20
9秒前
SJJ应助枫叶人生采纳,获得10
9秒前
小分队发布了新的文献求助10
11秒前
落雨发布了新的文献求助10
11秒前
12秒前
阔达的诗云完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
传奇3应助tombo100采纳,获得10
15秒前
15秒前
15秒前
16秒前
霸道恒天发布了新的文献求助10
17秒前
001发布了新的文献求助30
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336