A Key Node Mining Method Based on K-Shell and Neighborhood Information

节点(物理) 中心性 计算机科学 数据挖掘 钥匙(锁) 聚类分析 复杂网络 职位(财务) 聚类系数 领域(数学) 人工智能 数学 工程类 万维网 经济 纯数学 结构工程 组合数学 计算机安全 财务
作者
Na Zhao,Qingchun Feng,Hao Wang,Ming Jing,Zhiyu Lin,Jian Wang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (14): 6012-6012
标识
DOI:10.3390/app14146012
摘要

Mining key nodes in complex networks has always been a promising research direction in the field of complex networks. Many precise methods proposed by researchers for mining influential special nodes in networks have been widely applied in a plethora of fields. However, some important node-mining methods often use the degree as a node attribute indicator for evaluating node importance, while the clustering coefficient, as an important attribute of nodes, is rarely utilized. Some methods only consider the global position of nodes in the network while ignoring the local structural information of nodes in special positions and the network. Hence, this paper introduces a novel node centrality method, KCH. The KCH method leverages K-shell to identify the global position of nodes and assists in evaluating the importance of nodes by combining information such as structural holes and local clustering coefficients of first-order neighborhoods. This integrated approach yields an enhanced performance compared to existing methods. We conducted experiments on connectivity, monotonicity, and zero models on 10 networks to evaluate the performance of KCH. The experiments revealed that when compared to the collective influence baseline methods, such as social capital and hierarchical K-shell, the KCH method exhibited superior capabilities in terms of collective influence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bingxue完成签到,获得积分10
1秒前
爆米花应助祥子的骆驼采纳,获得10
1秒前
阿斯蒂和琴酒完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
syalonyui完成签到,获得积分10
2秒前
郭小胖14完成签到,获得积分10
2秒前
rumengren完成签到 ,获得积分10
2秒前
2秒前
lxx发布了新的文献求助10
2秒前
3秒前
存在发布了新的文献求助10
3秒前
3秒前
爆米花应助yshog采纳,获得10
4秒前
酷波er应助生动元龙采纳,获得10
4秒前
充电宝应助多喝水我采纳,获得10
4秒前
wwqc完成签到,获得积分0
5秒前
淳于三问发布了新的文献求助30
5秒前
执着访文发布了新的文献求助10
5秒前
LY完成签到,获得积分10
6秒前
6秒前
星川发布了新的文献求助10
6秒前
酷酷友容完成签到,获得积分10
6秒前
琪琪的完成签到,获得积分10
6秒前
虚心的宛亦完成签到,获得积分10
7秒前
彩色的芝麻完成签到 ,获得积分10
7秒前
7秒前
8秒前
kkt发布了新的文献求助10
8秒前
怡然云朵发布了新的文献求助10
9秒前
10秒前
10秒前
小神完成签到,获得积分10
11秒前
11秒前
summy完成签到,获得积分10
11秒前
鹅毛大雪完成签到,获得积分20
12秒前
SciGPT应助心灵美的白卉采纳,获得10
12秒前
纪间完成签到,获得积分10
12秒前
又又发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118