Identify truly high-risk TP53-mutated diffuse large B cell lymphoma patients and explore the underlying biological mechanisms

淋巴瘤 弥漫性大B细胞淋巴瘤 医学 生物 生物信息学 免疫学
作者
Kai‐Xin Du,Yifan Wu,Hua Wei,Zi‐Wen Duan,Rui Gao,Junheng Liang,Yue Li,Hua Yin,Jia‐Zhu Wu,Haorui Shen,Li Wang,Yang Shao,Jian-Yong Li,Jin‐Hua Liang,Wei Xu
出处
期刊:Cell Communication and Signaling [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12964-024-01765-w
摘要

TP53 mutation (TP53-mut) correlates with inferior survival in many cancers, whereas its prognostic role in diffuse large B-cell lymphoma (DLBCL) is still in controversy. Therefore, more precise risk stratification needs to be further explored for TP53-mut DLBCL patients. A set of 2637 DLBCL cases from multiple cohorts, was enrolled in our analysis. Among the 2637 DLBCL patients, 14.0% patients (370/2637) had TP53-mut. Since missense mutations account for the vast majority of TP53-mut DLBCL patients, and most non-missense mutations affect the function of the P53 protein, leading to worse survival rates, we distinguished patients with missense mutations. A TP53 missense mutation risk model was constructed based on a 150-combination machine learning computational framework, demonstrating excellent performance in predicting prognosis. Further analysis revealed that patients with high-risk missense mutations are significantly associated with early progression and exhibit dysregulation of multiple immune and metabolic pathways at the transcriptional level. Additionally, the high-risk group showed an absolutely suppressed immune microenvironment. To stratify the entire cohort of TP53-mut DLBCL, we combined clinical characteristics and ultimately constructed the TP53 Prognostic Index (TP53PI) model. In summary, we identified the truly high-risk TP53-mut DLBCL patients and explained this difference at the mutation and transcriptional levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青鱼完成签到,获得积分10
刚刚
hzl完成签到,获得积分10
刚刚
薰硝壤应助追寻的冬灵采纳,获得10
1秒前
1秒前
爆米花应助聂珩采纳,获得10
2秒前
上官若男应助三石呦423采纳,获得10
3秒前
小白菜发布了新的文献求助10
3秒前
和道一文字完成签到,获得积分10
4秒前
蓝鲸完成签到,获得积分10
5秒前
火火完成签到,获得积分20
5秒前
6秒前
英俊鼠标完成签到 ,获得积分10
7秒前
7秒前
要减肥囧完成签到,获得积分10
8秒前
huangsi完成签到,获得积分10
8秒前
领导范儿应助小白菜采纳,获得10
9秒前
whff完成签到,获得积分10
9秒前
吕如音发布了新的文献求助10
10秒前
10秒前
一鸣发布了新的文献求助10
10秒前
zxvcbnm发布了新的文献求助10
11秒前
11秒前
11秒前
香蕉觅云应助Chao采纳,获得10
12秒前
咚咚锵发布了新的文献求助10
12秒前
David完成签到 ,获得积分10
13秒前
情怀应助yuhan采纳,获得10
14秒前
14秒前
香蕉觅云应助风荏采纳,获得10
14秒前
14秒前
wpk9904发布了新的文献求助10
14秒前
joplinJIA发布了新的文献求助10
15秒前
15秒前
酷波er应助土豪的傲菡采纳,获得10
15秒前
16秒前
16秒前
18秒前
19秒前
Danboard发布了新的文献求助10
19秒前
上官若男应助魏开铭采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135928
求助须知:如何正确求助?哪些是违规求助? 2786670
关于积分的说明 7779194
捐赠科研通 2442969
什么是DOI,文献DOI怎么找? 1298748
科研通“疑难数据库(出版商)”最低求助积分说明 625219
版权声明 600870