Multiscale Spatial-Temporal Feature Fusion Neural Network for Motor Imagery Brain-Computer Interfaces

计算机科学 人工智能 特征(语言学) 人工神经网络 运动表象 脑-机接口 模式识别(心理学) 特征提取 计算机视觉 脑电图 神经科学 心理学 语言学 哲学
作者
Jing Jin,Weijie Chen,Ren Xu,Wei Liang,Xiao Wu,Xinjie He,Xingyu Wang,Andrzej Cichocki
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:7
标识
DOI:10.1109/jbhi.2024.3472097
摘要

Motor imagery, one of the main brain-computer interface (BCI) paradigms, has been extensively utilized in numerous BCI applications, such as the interaction between disabled people and external devices. Precise decoding, one of the most significant aspects of realizing efficient and stable interaction, has received a great deal of intensive research. However, the current decoding methods based on deep learning are still dominated by single-scale serial convolution, which leads to insufficient extraction of abundant information from motor imagery signals. To overcome such challenges, we propose a new end-to-end convolutional neural network based on multiscale spatial-temporal feature fusion (MSTFNet) for EEG classification of motor imagery. The architecture of MSTFNet consists of four distinct modules: feature enhancement module, multiscale temporal feature extraction module, spatial feature extraction module and feature fusion module, with the latter being further divided into the depthwise separable convolution block and efficient channel attention block. Moreover, we implement a straightforward yet potent data augmentation strategy to bolster the performance of MSTFNet significantly. To validate the performance of MSTFNet, we conduct cross-session experiments and leave-one-subject-out experiments. The cross-session experiment is conducted across two public datasets and one laboratory dataset. On the public datasets of BCI Competition IV 2a and BCI Competition IV 2b, MSTFNet achieves classification accuracies of 83.62% and 89.26%, respectively. On the laboratory dataset, MSTFNet achieves 86.68% classification accuracy. Besides, the leave-one-subject-out experiment is performed on the BCI Competition IV 2a dataset, and MSTFNet achieves 66.31% classification accuracy. These experimental results outperform several state-of-the-art methodologies, indicate the proposed MSTFNet's robust capability in decoding EEG signals associated with motor imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不得发布了新的文献求助10
1秒前
不安雁开完成签到,获得积分10
1秒前
求帮助完成签到,获得积分10
1秒前
cc发布了新的文献求助10
1秒前
皇甫妙竹完成签到,获得积分10
1秒前
1秒前
book卟完成签到 ,获得积分10
2秒前
sijia完成签到,获得积分10
2秒前
小胡先森完成签到,获得积分10
2秒前
3秒前
4秒前
松鼠发布了新的文献求助10
4秒前
4秒前
涛哥完成签到,获得积分10
4秒前
Lucas应助whuhustwit采纳,获得10
4秒前
5秒前
Linlin完成签到,获得积分10
5秒前
5秒前
CipherSage应助哇哈哈哈哈哈采纳,获得10
5秒前
6秒前
zhaoty完成签到,获得积分10
6秒前
6秒前
王晓蕾完成签到,获得积分10
6秒前
TheaGao完成签到 ,获得积分10
6秒前
6秒前
xulei发布了新的文献求助10
6秒前
zhui发布了新的文献求助10
7秒前
整齐元瑶完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
champagne发布了新的文献求助10
7秒前
今后应助英勇的新瑶采纳,获得10
8秒前
勿忸发布了新的文献求助10
8秒前
李健的粉丝团团长应助hhh采纳,获得10
8秒前
byd发布了新的文献求助10
8秒前
桐桐应助wwc采纳,获得10
8秒前
8秒前
在水一方应助雪糕刺客采纳,获得10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974643
求助须知:如何正确求助?哪些是违规求助? 3519094
关于积分的说明 11196979
捐赠科研通 3255182
什么是DOI,文献DOI怎么找? 1797700
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130