Multiscale Spatial-Temporal Feature Fusion Neural Network for Motor Imagery Brain-Computer Interfaces

计算机科学 人工智能 特征(语言学) 人工神经网络 运动表象 脑-机接口 模式识别(心理学) 特征提取 计算机视觉 脑电图 神经科学 心理学 哲学 语言学
作者
Jing Jin,Weijie Chen,Ren Xu,Wei Liang,Xiao Wu,Xinjie He,Xingyu Wang,Andrzej Cichocki
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3472097
摘要

Motor imagery, one of the main brain-computer interface (BCI) paradigms, has been extensively utilized in numerous BCI applications, such as the interaction between disabled people and external devices. Precise decoding, one of the most significant aspects of realizing efficient and stable interaction, has received a great deal of intensive research. However, the current decoding methods based on deep learning are still dominated by single-scale serial convolution, which leads to insufficient extraction of abundant information from motor imagery signals. To overcome such challenges, we propose a new end-to-end convolutional neural network based on multiscale spatial-temporal feature fusion (MSTFNet) for EEG classification of motor imagery. The architecture of MSTFNet consists of four distinct modules: feature enhancement module, multiscale temporal feature extraction module, spatial feature extraction module and feature fusion module, with the latter being further divided into the depthwise separable convolution block and efficient channel attention block. Moreover, we implement a straightforward yet potent data augmentation strategy to bolster the performance of MSTFNet significantly. To validate the performance of MSTFNet, we conduct cross-session experiments and leave-one-subject-out experiments. The cross-session experiment is conducted across two public datasets and one laboratory dataset. On the public datasets of BCI Competition IV 2a and BCI Competition IV 2b, MSTFNet achieves classification accuracies of 83.62% and 89.26%, respectively. On the laboratory dataset, MSTFNet achieves 86.68% classification accuracy. Besides, the leave-one-subject-out experiment is performed on the BCI Competition IV 2a dataset, and MSTFNet achieves 66.31% classification accuracy. These experimental results outperform several state-of-the-art methodologies, indicate the proposed MSTFNet's robust capability in decoding EEG signals associated with motor imagery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助PPRer采纳,获得10
1秒前
2秒前
2秒前
彭于晏完成签到,获得积分10
2秒前
wsxx200024发布了新的文献求助10
2秒前
orixero应助夏衍成风采纳,获得10
3秒前
Starwalker应助LmaPN7采纳,获得20
3秒前
3秒前
4秒前
4秒前
prosperp举报ANQ求助涉嫌违规
4秒前
CipherSage应助GXC0304采纳,获得10
6秒前
7秒前
77发布了新的文献求助10
7秒前
Aixia发布了新的文献求助10
7秒前
7秒前
lv完成签到,获得积分10
7秒前
宁学者发布了新的文献求助10
8秒前
Akim应助哭泣皮皮虾采纳,获得10
8秒前
大猪头完成签到,获得积分10
8秒前
kkkim完成签到 ,获得积分10
9秒前
欣喜代秋完成签到,获得积分10
9秒前
温柔如花完成签到,获得积分10
10秒前
lv发布了新的文献求助10
10秒前
wsxx200024完成签到,获得积分10
10秒前
Owen应助断棍豪斯采纳,获得10
11秒前
共享精神应助zilhua采纳,获得10
12秒前
yxl发布了新的文献求助10
12秒前
小马日常挨打完成签到 ,获得积分10
13秒前
John发布了新的文献求助10
13秒前
个性的紫菜应助欣喜代秋采纳,获得10
13秒前
13秒前
充电宝应助孤独衣采纳,获得10
13秒前
前寒武完成签到,获得积分10
14秒前
王灿灿应助水论文行者采纳,获得50
14秒前
慕青应助lifescience1采纳,获得10
15秒前
15秒前
NightGlow完成签到,获得积分10
15秒前
打打应助科研little高采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301509
求助须知:如何正确求助?哪些是违规求助? 2936202
关于积分的说明 8476514
捐赠科研通 2609958
什么是DOI,文献DOI怎么找? 1424957
科研通“疑难数据库(出版商)”最低求助积分说明 662206
邀请新用户注册赠送积分活动 646257