This study explored the effect of a heteropolysaccharide (RAMP) on aging model mice and the importance of changes in the gut microbiota mediated by RAMP for the first time. The findings revealed that RAMP exerted protective effects on cognitive decline and oxidative stress in mice subjected to D-gal-induced aging, potentially by regulating the intestinal flora, according to the results of the Morris water maze test; brain and immune organ indices; hematoxylin and eosin-stained cerebral cortex images; transmission electron microscopy analysis of cortical neurons; and biochemical index measurements. In addition, 16S rRNA sequencing revealed notable changes in the abundance of Acidobacteriota, Anaerovoracaceae, and GCA-900066575 in the mouse model, all of which were abrogated by RAMP. These findings confirm that RAMP regulates the composition of mouse intestinal microorganisms. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) functional analyses linked these changes to 27 metabolic pathways, including those of the nervous system. Furthermore, metabolomics analysis revealed four RAMP-regulated metabolites related to lipid metabolism (2-dodecylbenzenesulfonic acid, N-undecylbenzenesulfonic acid, aspartyl-isoleucine, and 1-palmitoyl-2-(5-oxo-valeroyl)-sn-glycero-3-phosphate), suggesting that the mechanism potentially associated with lipid metabolism regulation. This study provides novel insights into the antiaging mechanisms of RAMP, suggesting its potential use in antiaging treatments.