Prediction of rTMS Efficacy in Patients with Essential Tremor: Biomarkers from Individual Resting-state EEG Network

静息状态功能磁共振成像 脑电图 医学 原发性震颤 物理医学与康复 功能连接 心理学 神经科学
作者
Runyang He,Xue Shi,Lin Jiang,Yan Zhu,Zian Pei,Lin Zhu,Xiaolin Su,Dezhong Yao,Peng Xu,Yi Guo,Fali Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsre.2024.3469576
摘要

The pathogenesis of essential tremor (ET) remains unclear, and the efficacy of related drug treatment is inadequate for proper tremor control. Hence, in the current study, consecutive low-frequency repetitive transcranial magnetic stimulation (rTMS) modulation on cerebellum was accomplished in a population of ET patients, along with pre- and post-treatment resting-state electroencephalogram (EEG) networks being constructed. The results primarily clarified the decreasing of resting-state network interactions occurring in ET, especially the weaker frontal-parietal connectivity, compared to healthy individuals. While after the rTMS stimulation, promotions in both network connectivity and properties, as well as clinical scales, were identified. Furthermore, significant correlations between network characteristics and clinical scale scores enabled the development of predictive models for assessing rTMS intervention efficacy. Using a multivariable linear model, clinical scales after one-month rTMS treatment were accurately predicted, underscoring the potential of brain networks in evaluating rTMS effectiveness for ET. The findings consistently demonstrated that repetitive low-frequency rTMS neuromodulation on cerebellum can significantly improve the manifestations of ET, and individual networks will be reliable tools for evaluating the rTMS efficacy, thereby guiding personalized treatment strategies for ET patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助Leo采纳,获得10
1秒前
JamesPei应助违心采纳,获得10
1秒前
哇samm完成签到,获得积分10
1秒前
2秒前
晶晶完成签到,获得积分10
2秒前
科研通AI6应助闾丘博超采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
MM11111发布了新的文献求助10
4秒前
spring发布了新的文献求助10
4秒前
草莓熊完成签到,获得积分10
5秒前
爆米花应助lihua采纳,获得10
5秒前
JamesPei应助lszhw采纳,获得10
5秒前
5秒前
策略完成签到,获得积分10
6秒前
无花果应助王婷采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得50
6秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
英姑应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
wop111应助科研通管家采纳,获得20
7秒前
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
Song完成签到,获得积分10
7秒前
思源应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950123
求助须知:如何正确求助?哪些是违规求助? 4213072
关于积分的说明 13102608
捐赠科研通 3994857
什么是DOI,文献DOI怎么找? 2186618
邀请新用户注册赠送积分活动 1201904
关于科研通互助平台的介绍 1115269