Prediction of rTMS Efficacy in Patients with Essential Tremor: Biomarkers from Individual Resting-state EEG Network

静息状态功能磁共振成像 脑电图 医学 原发性震颤 物理医学与康复 功能连接 心理学 神经科学
作者
Runyang He,Xue Shi,Lin Jiang,Yan Zhu,Zian Pei,Lin Zhu,Xiaolin Su,Dezhong Yao,Peng Xu,Yi Guo,Fali Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsre.2024.3469576
摘要

The pathogenesis of essential tremor (ET) remains unclear, and the efficacy of related drug treatment is inadequate for proper tremor control. Hence, in the current study, consecutive low-frequency repetitive transcranial magnetic stimulation (rTMS) modulation on cerebellum was accomplished in a population of ET patients, along with pre- and post-treatment resting-state electroencephalogram (EEG) networks being constructed. The results primarily clarified the decreasing of resting-state network interactions occurring in ET, especially the weaker frontal-parietal connectivity, compared to healthy individuals. While after the rTMS stimulation, promotions in both network connectivity and properties, as well as clinical scales, were identified. Furthermore, significant correlations between network characteristics and clinical scale scores enabled the development of predictive models for assessing rTMS intervention efficacy. Using a multivariable linear model, clinical scales after one-month rTMS treatment were accurately predicted, underscoring the potential of brain networks in evaluating rTMS effectiveness for ET. The findings consistently demonstrated that repetitive low-frequency rTMS neuromodulation on cerebellum can significantly improve the manifestations of ET, and individual networks will be reliable tools for evaluating the rTMS efficacy, thereby guiding personalized treatment strategies for ET patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的数据线完成签到,获得积分10
刚刚
共享精神应助RNAPW采纳,获得10
刚刚
刚刚
1秒前
顾矜应助Fjun采纳,获得10
1秒前
领导范儿应助小李采纳,获得10
1秒前
linnnna发布了新的文献求助10
1秒前
大模型应助Chali采纳,获得10
2秒前
2秒前
2秒前
星辰大海应助小夭采纳,获得10
2秒前
希望天下0贩的0应助家伟采纳,获得10
2秒前
上官若男应助Lorry采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
yy发布了新的文献求助10
4秒前
4秒前
07关注了科研通微信公众号
4秒前
wanci应助sanmumu采纳,获得10
4秒前
5秒前
1900tdlemon发布了新的文献求助10
6秒前
打打应助大方的冰旋采纳,获得10
6秒前
6秒前
Li发布了新的文献求助10
6秒前
blackgoat完成签到,获得积分10
6秒前
传奇3应助液氧采纳,获得10
6秒前
ikouyo完成签到 ,获得积分10
7秒前
7秒前
8秒前
橘子发布了新的文献求助10
8秒前
sen完成签到,获得积分10
9秒前
Chillym完成签到 ,获得积分10
9秒前
无极微光应助柠檬不萌采纳,获得20
9秒前
9秒前
9秒前
9秒前
10秒前
所所应助Wei采纳,获得10
10秒前
小强发布了新的文献求助10
10秒前
嘎嘎完成签到,获得积分20
10秒前
Jerry发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095