Prediction of rTMS Efficacy in Patients with Essential Tremor: Biomarkers from Individual Resting-state EEG Network

静息状态功能磁共振成像 脑电图 医学 原发性震颤 物理医学与康复 功能连接 心理学 神经科学
作者
Runyang He,Xue Shi,Lin Jiang,Yan Zhu,Zian Pei,Lin Zhu,Xiaolin Su,Dezhong Yao,Peng Xu,Yi Guo,Fali Li
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsre.2024.3469576
摘要

The pathogenesis of essential tremor (ET) remains unclear, and the efficacy of related drug treatment is inadequate for proper tremor control. Hence, in the current study, consecutive low-frequency repetitive transcranial magnetic stimulation (rTMS) modulation on cerebellum was accomplished in a population of ET patients, along with pre- and post-treatment resting-state electroencephalogram (EEG) networks being constructed. The results primarily clarified the decreasing of resting-state network interactions occurring in ET, especially the weaker frontal-parietal connectivity, compared to healthy individuals. While after the rTMS stimulation, promotions in both network connectivity and properties, as well as clinical scales, were identified. Furthermore, significant correlations between network characteristics and clinical scale scores enabled the development of predictive models for assessing rTMS intervention efficacy. Using a multivariable linear model, clinical scales after one-month rTMS treatment were accurately predicted, underscoring the potential of brain networks in evaluating rTMS effectiveness for ET. The findings consistently demonstrated that repetitive low-frequency rTMS neuromodulation on cerebellum can significantly improve the manifestations of ET, and individual networks will be reliable tools for evaluating the rTMS efficacy, thereby guiding personalized treatment strategies for ET patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
从容迎夏发布了新的文献求助10
1秒前
13发布了新的文献求助10
1秒前
小帅完成签到,获得积分10
1秒前
kohu发布了新的文献求助30
2秒前
2秒前
天黑黑发布了新的文献求助10
2秒前
思源应助鲸鱼采纳,获得10
2秒前
2秒前
我是老大应助zyzy1996采纳,获得10
2秒前
3秒前
3秒前
bing完成签到 ,获得积分10
3秒前
3秒前
4秒前
yejian完成签到,获得积分10
4秒前
冷酷的天晴完成签到 ,获得积分10
4秒前
张亚宁完成签到,获得积分20
4秒前
吃不下发布了新的文献求助10
4秒前
4秒前
4秒前
大模型应助小宇宙ZKYYS采纳,获得10
5秒前
5秒前
5秒前
滚滚完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
582697438完成签到,获得积分20
7秒前
dudu发布了新的文献求助10
7秒前
可爱的函函应助小Q采纳,获得10
7秒前
xuening完成签到,获得积分10
8秒前
8秒前
开心听露发布了新的文献求助10
8秒前
情怀应助陈泽宇采纳,获得10
9秒前
哈哈发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526