Enhancing 4‐D Landslide Monitoring and Block Interaction Analysis With a Novel Kalman‐Filter‐Based InSAR Approach

卡尔曼滤波器 干涉合成孔径雷达 山崩 块(置换群论) 计算机科学 扩展卡尔曼滤波器 遥感 地质学 地震学 数学 人工智能 合成孔径雷达 几何学
作者
Wanji Zheng,Jun Hu,Zhong Lu,Xie Hu,Qian Sun,Jihong Liu,Bo Huang
出处
期刊:Journal Of Geophysical Research: Earth Surface [Wiley]
卷期号:129 (11)
标识
DOI:10.1029/2024jf007923
摘要

Abstract In recent years, Synthetic Aperture Radar Interferometry (InSAR) has become widely utilized for slow‐moving landslide monitoring due to its high resolution, accuracy, and extensive coverage. By integrating data from various orbits/platforms and monitoring sources, one‐dimensional (1‐D) line‐of‐sight (LOS) InSAR measurements can be explored to infer three‐dimensional (3‐D) movements. However, inconsistencies in observation times among different orbits and monitoring sources pose challenges in accurately capturing dynamic 3‐D movements over time (referred to as 4‐D). In this study, we propose a novel method, termed KFI‐4D that incorporates spatiotemporal constraints into the traditional Kalman filter. This enhancement transforms the underdetermined problem of 4‐D movement acquisition into a dynamic parameter estimation problem, enabling precise monitoring of landslide movements. The KFI‐4D method was evaluated using both synthetic data sets and real data from the Hooskanaden landslide, demonstrating an improvement exceeding 50% in root mean square errors (RMSEs) compared to conventional methods. Additionally, the high‐resolution characteristics of InSAR‐derived 4‐D movements allow for the analysis of strain invariants, providing insights into block interactions and landslide dynamics. Our findings reveal that strain invariants effectively indicate the distribution and activity of landslide blocks and slip surfaces as well as their response to triggers. Notably, abnormal signals identified in strain invariants prior to the catastrophic event at Hooskanaden suggest potential for early warning of landslides. The future integration of data from advanced satellites, such as NISAR, ALOS4 PALSAR3, and Sentinel‐1C, is expected to further enhance the KFI‐4D method's capabilities, improving temporal resolution and early warning potential for landslide monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张小北发布了新的文献求助40
1秒前
俭朴山兰发布了新的文献求助10
1秒前
Sailor完成签到,获得积分10
1秒前
极品小亮发布了新的文献求助10
1秒前
喜悦香薇发布了新的文献求助10
3秒前
12366发布了新的文献求助10
3秒前
3秒前
顾矜应助mmol采纳,获得10
4秒前
ClarkLee完成签到,获得积分10
5秒前
生动映波完成签到 ,获得积分10
5秒前
AU发布了新的文献求助10
5秒前
orchid完成签到,获得积分10
5秒前
英姑应助清新的沛蓝采纳,获得10
6秒前
过于喧嚣的孤独完成签到,获得积分10
7秒前
9秒前
18822596238完成签到,获得积分10
9秒前
NexusExplorer应助12366采纳,获得10
9秒前
不配.应助极品小亮采纳,获得10
10秒前
CipherSage应助汤博森采纳,获得30
10秒前
星辰大海应助Anna采纳,获得10
11秒前
13秒前
简单完成签到,获得积分10
13秒前
zjunzero完成签到,获得积分10
15秒前
zzer发布了新的文献求助10
16秒前
17秒前
诚心的电话完成签到 ,获得积分10
18秒前
四年毕业的博士完成签到,获得积分20
18秒前
20秒前
21秒前
zjunzero发布了新的文献求助10
22秒前
22秒前
茗溪完成签到 ,获得积分10
22秒前
可爱的大白菜真实的钥匙完成签到 ,获得积分10
22秒前
等待的花生完成签到,获得积分10
23秒前
穆萝完成签到,获得积分10
24秒前
Marine完成签到,获得积分10
24秒前
24秒前
白嫖论文发布了新的文献求助10
24秒前
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845