Enhancing 4‐D Landslide Monitoring and Block Interaction Analysis With a Novel Kalman‐Filter‐Based InSAR Approach

卡尔曼滤波器 干涉合成孔径雷达 山崩 块(置换群论) 计算机科学 扩展卡尔曼滤波器 遥感 地质学 地震学 数学 人工智能 合成孔径雷达 几何学
作者
Wanji Zheng,Jun Hu,Zhong Lu,Xie Hu,Qian Sun,Jihong Liu,Bo Huang
出处
期刊:Journal Of Geophysical Research: Earth Surface [Wiley]
卷期号:129 (11) 被引量:2
标识
DOI:10.1029/2024jf007923
摘要

Abstract In recent years, Synthetic Aperture Radar Interferometry (InSAR) has become widely utilized for slow‐moving landslide monitoring due to its high resolution, accuracy, and extensive coverage. By integrating data from various orbits/platforms and monitoring sources, one‐dimensional (1‐D) line‐of‐sight (LOS) InSAR measurements can be explored to infer three‐dimensional (3‐D) movements. However, inconsistencies in observation times among different orbits and monitoring sources pose challenges in accurately capturing dynamic 3‐D movements over time (referred to as 4‐D). In this study, we propose a novel method, termed KFI‐4D that incorporates spatiotemporal constraints into the traditional Kalman filter. This enhancement transforms the underdetermined problem of 4‐D movement acquisition into a dynamic parameter estimation problem, enabling precise monitoring of landslide movements. The KFI‐4D method was evaluated using both synthetic data sets and real data from the Hooskanaden landslide, demonstrating an improvement exceeding 50% in root mean square errors (RMSEs) compared to conventional methods. Additionally, the high‐resolution characteristics of InSAR‐derived 4‐D movements allow for the analysis of strain invariants, providing insights into block interactions and landslide dynamics. Our findings reveal that strain invariants effectively indicate the distribution and activity of landslide blocks and slip surfaces as well as their response to triggers. Notably, abnormal signals identified in strain invariants prior to the catastrophic event at Hooskanaden suggest potential for early warning of landslides. The future integration of data from advanced satellites, such as NISAR, ALOS4 PALSAR3, and Sentinel‐1C, is expected to further enhance the KFI‐4D method's capabilities, improving temporal resolution and early warning potential for landslide monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bxxxxx应助包容秋荷采纳,获得200
1秒前
2秒前
2秒前
zcy完成签到 ,获得积分10
3秒前
CZLhaust发布了新的文献求助10
3秒前
洁净方盒发布了新的文献求助10
4秒前
天竹子发布了新的文献求助10
8秒前
9秒前
fxb发布了新的文献求助10
10秒前
酷波er应助大侦探皮卡丘采纳,获得10
11秒前
11秒前
忧郁的鱿鱼完成签到,获得积分10
11秒前
ylwang24发布了新的文献求助10
11秒前
小西发布了新的文献求助10
12秒前
13秒前
wuyu发布了新的文献求助10
14秒前
Ma完成签到,获得积分10
15秒前
MinQi完成签到,获得积分10
16秒前
16秒前
传奇3应助Leo采纳,获得10
17秒前
852应助小韩同学采纳,获得10
17秒前
18秒前
Ma发布了新的文献求助10
18秒前
19秒前
20秒前
量子星尘发布了新的文献求助30
21秒前
ggappsong发布了新的文献求助10
21秒前
啦啦啦发布了新的文献求助10
24秒前
英勇的凌蝶完成签到 ,获得积分10
24秒前
落尘府完成签到,获得积分10
25秒前
曾天祥发布了新的文献求助10
25秒前
26秒前
yihuifa发布了新的文献求助10
30秒前
31秒前
32秒前
33秒前
科目三应助HUANG_黄采纳,获得10
34秒前
35秒前
allzzwell发布了新的文献求助10
36秒前
深情安青应助dlgd采纳,获得10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959791
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127539
捐赠科研通 3237976
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871758
科研通“疑难数据库(出版商)”最低求助积分说明 803019