Enhancing 4‐D Landslide Monitoring and Block Interaction Analysis With a Novel Kalman‐Filter‐Based InSAR Approach

卡尔曼滤波器 干涉合成孔径雷达 山崩 块(置换群论) 计算机科学 扩展卡尔曼滤波器 遥感 地质学 地震学 数学 人工智能 合成孔径雷达 几何学
作者
Wanji Zheng,Jun Hu,Zhong Lu,Xie Hu,Qian Sun,Jihong Liu,Bo Huang
出处
期刊:Journal Of Geophysical Research: Earth Surface [Wiley]
卷期号:129 (11) 被引量:7
标识
DOI:10.1029/2024jf007923
摘要

Abstract In recent years, Synthetic Aperture Radar Interferometry (InSAR) has become widely utilized for slow‐moving landslide monitoring due to its high resolution, accuracy, and extensive coverage. By integrating data from various orbits/platforms and monitoring sources, one‐dimensional (1‐D) line‐of‐sight (LOS) InSAR measurements can be explored to infer three‐dimensional (3‐D) movements. However, inconsistencies in observation times among different orbits and monitoring sources pose challenges in accurately capturing dynamic 3‐D movements over time (referred to as 4‐D). In this study, we propose a novel method, termed KFI‐4D that incorporates spatiotemporal constraints into the traditional Kalman filter. This enhancement transforms the underdetermined problem of 4‐D movement acquisition into a dynamic parameter estimation problem, enabling precise monitoring of landslide movements. The KFI‐4D method was evaluated using both synthetic data sets and real data from the Hooskanaden landslide, demonstrating an improvement exceeding 50% in root mean square errors (RMSEs) compared to conventional methods. Additionally, the high‐resolution characteristics of InSAR‐derived 4‐D movements allow for the analysis of strain invariants, providing insights into block interactions and landslide dynamics. Our findings reveal that strain invariants effectively indicate the distribution and activity of landslide blocks and slip surfaces as well as their response to triggers. Notably, abnormal signals identified in strain invariants prior to the catastrophic event at Hooskanaden suggest potential for early warning of landslides. The future integration of data from advanced satellites, such as NISAR, ALOS4 PALSAR3, and Sentinel‐1C, is expected to further enhance the KFI‐4D method's capabilities, improving temporal resolution and early warning potential for landslide monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
鲸鱼打滚发布了新的文献求助10
1秒前
科研通AI2S应助cui18采纳,获得10
1秒前
Changfh完成签到 ,获得积分10
1秒前
2秒前
2秒前
汉堡包应助浪费青春传奇采纳,获得10
2秒前
2秒前
薯条发布了新的文献求助10
3秒前
3秒前
deer发布了新的文献求助10
3秒前
Bertha完成签到,获得积分10
3秒前
Novoa发布了新的文献求助10
3秒前
3秒前
万能图书馆应助ZXC采纳,获得10
3秒前
4秒前
搜集达人应助优美的唇彩采纳,获得10
5秒前
cx完成签到 ,获得积分10
5秒前
kai9712应助Ting采纳,获得20
6秒前
噜lu发布了新的文献求助10
6秒前
无花果应助wch采纳,获得10
7秒前
Hello应助冷静的慕青采纳,获得10
7秒前
善学以致用应助薯条采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
肉肉发布了新的文献求助10
8秒前
YUE发布了新的文献求助10
9秒前
Judy发布了新的文献求助10
10秒前
刘晚柠完成签到,获得积分10
10秒前
panda完成签到,获得积分10
10秒前
11秒前
11秒前
小二郎应助ee采纳,获得10
11秒前
gapper发布了新的文献求助10
12秒前
12秒前
wz完成签到,获得积分10
12秒前
Guide_steps完成签到 ,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082