已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hybrid Prediction Model for Pumping Well System Efficiency Based on Stacking Integration Strategy

堆积 计算机科学 材料科学 生物系统 化学 生物 有机化学
作者
Biao Ma,Shimin Dong
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/8868949
摘要

The current prediction model for the system efficiency of pumping units primarily relies on a mechanistic approach. However, this approach incorporates numerous unnecessary factors, thereby, increasing the cost associated with predictions. With the improvement of the oil field database, the available information is increasing. Some scholars propose a prediction model based on a single neural network, however, such models face challenges in effectively capturing complex data, resulting in lower prediction accuracy and limited resistance to interference. To solve the above problems, the study proposes a novel stacking integrated learning prediction model, which incorporates fivefold cross‐validation. First, the magnitude of the correlation coefficient was quantified using the Pearson correlation coefficient. Second, the impact and predictive features were normalized. Final, convolutional neural network (CNN), recurrent neural network (RNN), Long Short‐Term Memory network (LSTM), gated recurrent unit (GRU), and transformer are used as the base models, and fully connected neural network (FNN) is used as the metamodel. Each base model was trained by fivefold cross‐validation, and the predicted values of each fold were stacked by rows. Next, the predicted values of each base model are stacked by columns as input variables to the metamodel and metamodel learning is performed, and the stacking integrated learning prediction model based on fivefold crossover validation is established. To validate the accuracy of the model, we selected 5,000 actual well parameters, including 26 impact features and one predictive feature, for comparative analysis. This analysis presents the maximum percentage reduction in mean square error (MSE), mean absolute error (MAE), and root‐mean‐square error (RMSE) of our proposed integrated learning model concerning a single neural network prediction model as 28.26%, 24.40%, and 15.66%, respectively. The maximum percentage improvement in R 2 is 17.74%. It shows that our proposed integrated learning prediction model has high prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠的一手完成签到 ,获得积分10
刚刚
喵呜发布了新的文献求助30
2秒前
mathmotive完成签到,获得积分10
2秒前
zhongxia完成签到 ,获得积分10
2秒前
3秒前
最棒哒完成签到 ,获得积分10
4秒前
小人物的坚持完成签到 ,获得积分10
5秒前
ZJX完成签到,获得积分10
6秒前
科研通AI6应助晚风采纳,获得10
6秒前
可爱安白完成签到,获得积分10
8秒前
Wuyx完成签到 ,获得积分10
8秒前
qin发布了新的文献求助10
8秒前
庚朝年完成签到 ,获得积分10
9秒前
Chen完成签到 ,获得积分10
9秒前
阿狸贱贱完成签到,获得积分10
10秒前
孙毅航完成签到 ,获得积分10
10秒前
孔孔孔完成签到 ,获得积分10
11秒前
vippp完成签到 ,获得积分10
11秒前
NiceSunnyDay完成签到 ,获得积分10
11秒前
自由橘子完成签到 ,获得积分10
12秒前
Yian完成签到,获得积分10
12秒前
倪妮完成签到,获得积分10
13秒前
14秒前
14秒前
激动的跳跳糖完成签到 ,获得积分10
14秒前
认真的寒香完成签到,获得积分10
14秒前
15秒前
君莫笑完成签到 ,获得积分10
15秒前
dadabad完成签到 ,获得积分10
15秒前
哭泣忆文完成签到,获得积分10
16秒前
祁风完成签到 ,获得积分10
16秒前
lily发布了新的文献求助20
17秒前
Danny完成签到,获得积分10
17秒前
1點點cui完成签到,获得积分10
17秒前
17秒前
18秒前
喵呜完成签到,获得积分20
18秒前
XRWei完成签到 ,获得积分10
19秒前
精明的赛凤完成签到 ,获得积分10
19秒前
qin完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493

今日热心研友

沉心静气搞学习
70
差不多先生
2 20
Li
3
豆子
20
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10