A Hybrid Prediction Model for Pumping Well System Efficiency Based on Stacking Integration Strategy

堆积 计算机科学 材料科学 生物系统 化学 生物 有机化学
作者
Biao Ma,Shimin Dong
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/8868949
摘要

The current prediction model for the system efficiency of pumping units primarily relies on a mechanistic approach. However, this approach incorporates numerous unnecessary factors, thereby, increasing the cost associated with predictions. With the improvement of the oil field database, the available information is increasing. Some scholars propose a prediction model based on a single neural network, however, such models face challenges in effectively capturing complex data, resulting in lower prediction accuracy and limited resistance to interference. To solve the above problems, the study proposes a novel stacking integrated learning prediction model, which incorporates fivefold cross‐validation. First, the magnitude of the correlation coefficient was quantified using the Pearson correlation coefficient. Second, the impact and predictive features were normalized. Final, convolutional neural network (CNN), recurrent neural network (RNN), Long Short‐Term Memory network (LSTM), gated recurrent unit (GRU), and transformer are used as the base models, and fully connected neural network (FNN) is used as the metamodel. Each base model was trained by fivefold cross‐validation, and the predicted values of each fold were stacked by rows. Next, the predicted values of each base model are stacked by columns as input variables to the metamodel and metamodel learning is performed, and the stacking integrated learning prediction model based on fivefold crossover validation is established. To validate the accuracy of the model, we selected 5,000 actual well parameters, including 26 impact features and one predictive feature, for comparative analysis. This analysis presents the maximum percentage reduction in mean square error (MSE), mean absolute error (MAE), and root‐mean‐square error (RMSE) of our proposed integrated learning model concerning a single neural network prediction model as 28.26%, 24.40%, and 15.66%, respectively. The maximum percentage improvement in R 2 is 17.74%. It shows that our proposed integrated learning prediction model has high prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助一一采纳,获得20
1秒前
心理可达鸭完成签到,获得积分10
1秒前
Ruilin完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
熊健钧完成签到,获得积分10
5秒前
7秒前
CipherSage应助小吴同志采纳,获得10
8秒前
Akim应助缺口口采纳,获得10
10秒前
PAIDAXXXX发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
13秒前
深情的安青完成签到,获得积分10
13秒前
Ulysses完成签到,获得积分10
13秒前
111完成签到,获得积分10
13秒前
专注的十八完成签到,获得积分10
14秒前
15秒前
橙子发布了新的文献求助10
17秒前
大个应助QinQin采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
残剑月发布了新的文献求助10
20秒前
yuy发布了新的文献求助10
22秒前
humble完成签到 ,获得积分10
23秒前
llly发布了新的文献求助10
23秒前
wang发布了新的文献求助10
23秒前
咸鱼饭团完成签到,获得积分10
25秒前
神勇的荟完成签到 ,获得积分10
25秒前
harpocrates发布了新的文献求助10
25秒前
rre发布了新的文献求助10
26秒前
27秒前
英俊的铭应助葡萄小伊ovo采纳,获得10
27秒前
天天快乐应助缺口口采纳,获得10
27秒前
amy完成签到,获得积分10
27秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580844
求助须知:如何正确求助?哪些是违规求助? 4665585
关于积分的说明 14756750
捐赠科研通 4607138
什么是DOI,文献DOI怎么找? 2528135
邀请新用户注册赠送积分活动 1497453
关于科研通互助平台的介绍 1466427