亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hybrid Prediction Model for Pumping Well System Efficiency Based on Stacking Integration Strategy

堆积 计算机科学 材料科学 生物系统 化学 生物 有机化学
作者
Biao Ma,Shimin Dong
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/8868949
摘要

The current prediction model for the system efficiency of pumping units primarily relies on a mechanistic approach. However, this approach incorporates numerous unnecessary factors, thereby, increasing the cost associated with predictions. With the improvement of the oil field database, the available information is increasing. Some scholars propose a prediction model based on a single neural network, however, such models face challenges in effectively capturing complex data, resulting in lower prediction accuracy and limited resistance to interference. To solve the above problems, the study proposes a novel stacking integrated learning prediction model, which incorporates fivefold cross‐validation. First, the magnitude of the correlation coefficient was quantified using the Pearson correlation coefficient. Second, the impact and predictive features were normalized. Final, convolutional neural network (CNN), recurrent neural network (RNN), Long Short‐Term Memory network (LSTM), gated recurrent unit (GRU), and transformer are used as the base models, and fully connected neural network (FNN) is used as the metamodel. Each base model was trained by fivefold cross‐validation, and the predicted values of each fold were stacked by rows. Next, the predicted values of each base model are stacked by columns as input variables to the metamodel and metamodel learning is performed, and the stacking integrated learning prediction model based on fivefold crossover validation is established. To validate the accuracy of the model, we selected 5,000 actual well parameters, including 26 impact features and one predictive feature, for comparative analysis. This analysis presents the maximum percentage reduction in mean square error (MSE), mean absolute error (MAE), and root‐mean‐square error (RMSE) of our proposed integrated learning model concerning a single neural network prediction model as 28.26%, 24.40%, and 15.66%, respectively. The maximum percentage improvement in R 2 is 17.74%. It shows that our proposed integrated learning prediction model has high prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6w6完成签到 ,获得积分10
7秒前
30秒前
迅速友容发布了新的文献求助10
30秒前
小蘑菇应助追寻的南风采纳,获得10
1分钟前
所所应助coco采纳,获得10
1分钟前
英姑应助aiid采纳,获得10
1分钟前
1分钟前
史前巨怪完成签到,获得积分10
1分钟前
uss完成签到,获得积分10
2分钟前
2分钟前
2分钟前
NINI完成签到 ,获得积分20
2分钟前
3分钟前
coco发布了新的文献求助10
3分钟前
3分钟前
3分钟前
开朗小饼干完成签到,获得积分10
3分钟前
从容芮应助Komolika采纳,获得600
3分钟前
糖伯虎完成签到 ,获得积分10
3分钟前
coco发布了新的文献求助10
3分钟前
4分钟前
4分钟前
淡然的书本完成签到,获得积分10
4分钟前
充电宝应助淡然的书本采纳,获得10
4分钟前
你要学好完成签到 ,获得积分10
4分钟前
4分钟前
阳阿儿发布了新的文献求助10
4分钟前
coco发布了新的文献求助30
4分钟前
4分钟前
迅速友容发布了新的文献求助10
4分钟前
阳阿儿完成签到,获得积分10
4分钟前
LYL完成签到,获得积分10
5分钟前
5分钟前
慕青应助科研通管家采纳,获得10
5分钟前
帅哥发布了新的文献求助10
5分钟前
5分钟前
5分钟前
樱桃猴子应助迅速友容采纳,获得10
5分钟前
Yililusiours完成签到,获得积分10
5分钟前
8R60d8应助LouieHuang采纳,获得10
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805697
关于积分的说明 7865657
捐赠科研通 2463927
什么是DOI,文献DOI怎么找? 1311677
科研通“疑难数据库(出版商)”最低求助积分说明 629655
版权声明 601853