A Hybrid Prediction Model for Pumping Well System Efficiency Based on Stacking Integration Strategy

堆积 计算机科学 材料科学 生物系统 化学 生物 有机化学
作者
Biao Ma,Shimin Dong
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/8868949
摘要

The current prediction model for the system efficiency of pumping units primarily relies on a mechanistic approach. However, this approach incorporates numerous unnecessary factors, thereby, increasing the cost associated with predictions. With the improvement of the oil field database, the available information is increasing. Some scholars propose a prediction model based on a single neural network, however, such models face challenges in effectively capturing complex data, resulting in lower prediction accuracy and limited resistance to interference. To solve the above problems, the study proposes a novel stacking integrated learning prediction model, which incorporates fivefold cross‐validation. First, the magnitude of the correlation coefficient was quantified using the Pearson correlation coefficient. Second, the impact and predictive features were normalized. Final, convolutional neural network (CNN), recurrent neural network (RNN), Long Short‐Term Memory network (LSTM), gated recurrent unit (GRU), and transformer are used as the base models, and fully connected neural network (FNN) is used as the metamodel. Each base model was trained by fivefold cross‐validation, and the predicted values of each fold were stacked by rows. Next, the predicted values of each base model are stacked by columns as input variables to the metamodel and metamodel learning is performed, and the stacking integrated learning prediction model based on fivefold crossover validation is established. To validate the accuracy of the model, we selected 5,000 actual well parameters, including 26 impact features and one predictive feature, for comparative analysis. This analysis presents the maximum percentage reduction in mean square error (MSE), mean absolute error (MAE), and root‐mean‐square error (RMSE) of our proposed integrated learning model concerning a single neural network prediction model as 28.26%, 24.40%, and 15.66%, respectively. The maximum percentage improvement in R 2 is 17.74%. It shows that our proposed integrated learning prediction model has high prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不知道发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
1秒前
吃鱼鱼鱼完成签到,获得积分10
1秒前
2秒前
松桕柏完成签到,获得积分10
2秒前
3秒前
刻苦的三问应助思玉采纳,获得10
3秒前
3秒前
wuti发布了新的文献求助20
3秒前
无花果应助刘天强采纳,获得10
4秒前
bubbull发布了新的文献求助10
4秒前
清樾完成签到 ,获得积分10
4秒前
zhang完成签到,获得积分10
4秒前
驱蚊器发布了新的文献求助30
5秒前
高高发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
ZL张莉发布了新的文献求助30
6秒前
6秒前
丘比特应助积极紫翠采纳,获得10
6秒前
Liu完成签到 ,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
英姑应助研究生采纳,获得10
7秒前
英姑应助全焱采纳,获得10
8秒前
小蘑菇应助CDI和LIB采纳,获得10
8秒前
wanci应助兑现采纳,获得10
8秒前
自由傲晴完成签到 ,获得积分10
9秒前
陶醉西牛发布了新的文献求助10
10秒前
fox发布了新的文献求助10
10秒前
妙旋克里斯完成签到,获得积分10
10秒前
10秒前
纪思奇完成签到 ,获得积分10
11秒前
李朋发布了新的文献求助10
11秒前
谦让白秋完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403