A Hybrid Prediction Model for Pumping Well System Efficiency Based on Stacking Integration Strategy

堆积 计算机科学 材料科学 生物系统 化学 生物 有机化学
作者
Biao Ma,Shimin Dong
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/8868949
摘要

The current prediction model for the system efficiency of pumping units primarily relies on a mechanistic approach. However, this approach incorporates numerous unnecessary factors, thereby, increasing the cost associated with predictions. With the improvement of the oil field database, the available information is increasing. Some scholars propose a prediction model based on a single neural network, however, such models face challenges in effectively capturing complex data, resulting in lower prediction accuracy and limited resistance to interference. To solve the above problems, the study proposes a novel stacking integrated learning prediction model, which incorporates fivefold cross‐validation. First, the magnitude of the correlation coefficient was quantified using the Pearson correlation coefficient. Second, the impact and predictive features were normalized. Final, convolutional neural network (CNN), recurrent neural network (RNN), Long Short‐Term Memory network (LSTM), gated recurrent unit (GRU), and transformer are used as the base models, and fully connected neural network (FNN) is used as the metamodel. Each base model was trained by fivefold cross‐validation, and the predicted values of each fold were stacked by rows. Next, the predicted values of each base model are stacked by columns as input variables to the metamodel and metamodel learning is performed, and the stacking integrated learning prediction model based on fivefold crossover validation is established. To validate the accuracy of the model, we selected 5,000 actual well parameters, including 26 impact features and one predictive feature, for comparative analysis. This analysis presents the maximum percentage reduction in mean square error (MSE), mean absolute error (MAE), and root‐mean‐square error (RMSE) of our proposed integrated learning model concerning a single neural network prediction model as 28.26%, 24.40%, and 15.66%, respectively. The maximum percentage improvement in R 2 is 17.74%. It shows that our proposed integrated learning prediction model has high prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ramia完成签到 ,获得积分10
1秒前
杂化轨道退役研究员完成签到,获得积分10
1秒前
Lloyd_Lee发布了新的文献求助10
1秒前
2秒前
CHEN完成签到,获得积分10
2秒前
王亮发布了新的文献求助10
3秒前
流星雨发布了新的文献求助10
3秒前
敏感的孤兰完成签到,获得积分20
3秒前
4秒前
ccccchen完成签到,获得积分10
4秒前
5秒前
5秒前
wanwan47完成签到 ,获得积分10
6秒前
leyi完成签到,获得积分10
6秒前
鱼木完成签到,获得积分10
6秒前
饶天源发布了新的文献求助10
6秒前
6秒前
酷炫的雪珊完成签到 ,获得积分10
7秒前
无花果应助Bonnienuit采纳,获得10
7秒前
肉肉发布了新的文献求助10
8秒前
Chen完成签到,获得积分10
8秒前
8秒前
ggjy完成签到,获得积分10
9秒前
13675329716完成签到,获得积分10
9秒前
echo发布了新的文献求助10
10秒前
cnulee完成签到,获得积分10
10秒前
CipherSage应助我的采纳,获得10
10秒前
854fycchjh完成签到,获得积分10
10秒前
流星雨完成签到,获得积分10
10秒前
星辰大海应助牙牙采纳,获得10
10秒前
高尚发布了新的文献求助10
10秒前
FF发布了新的文献求助10
10秒前
1101592875发布了新的文献求助10
11秒前
刘指导发布了新的文献求助10
11秒前
feiyuzhang发布了新的文献求助10
11秒前
12秒前
DK完成签到,获得积分10
12秒前
12秒前
东方楚才完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927