A Hybrid Prediction Model for Pumping Well System Efficiency Based on Stacking Integration Strategy

堆积 计算机科学 材料科学 生物系统 化学 生物 有机化学
作者
Biao Ma,Shimin Dong
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/8868949
摘要

The current prediction model for the system efficiency of pumping units primarily relies on a mechanistic approach. However, this approach incorporates numerous unnecessary factors, thereby, increasing the cost associated with predictions. With the improvement of the oil field database, the available information is increasing. Some scholars propose a prediction model based on a single neural network, however, such models face challenges in effectively capturing complex data, resulting in lower prediction accuracy and limited resistance to interference. To solve the above problems, the study proposes a novel stacking integrated learning prediction model, which incorporates fivefold cross‐validation. First, the magnitude of the correlation coefficient was quantified using the Pearson correlation coefficient. Second, the impact and predictive features were normalized. Final, convolutional neural network (CNN), recurrent neural network (RNN), Long Short‐Term Memory network (LSTM), gated recurrent unit (GRU), and transformer are used as the base models, and fully connected neural network (FNN) is used as the metamodel. Each base model was trained by fivefold cross‐validation, and the predicted values of each fold were stacked by rows. Next, the predicted values of each base model are stacked by columns as input variables to the metamodel and metamodel learning is performed, and the stacking integrated learning prediction model based on fivefold crossover validation is established. To validate the accuracy of the model, we selected 5,000 actual well parameters, including 26 impact features and one predictive feature, for comparative analysis. This analysis presents the maximum percentage reduction in mean square error (MSE), mean absolute error (MAE), and root‐mean‐square error (RMSE) of our proposed integrated learning model concerning a single neural network prediction model as 28.26%, 24.40%, and 15.66%, respectively. The maximum percentage improvement in R 2 is 17.74%. It shows that our proposed integrated learning prediction model has high prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助JD采纳,获得10
刚刚
hanry完成签到 ,获得积分10
1秒前
木南完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
研友_Zlx3aZ发布了新的文献求助10
2秒前
3秒前
调皮秋凌完成签到,获得积分20
3秒前
3秒前
荣容完成签到 ,获得积分10
3秒前
4秒前
4秒前
Stone完成签到,获得积分10
4秒前
不吃橘子发布了新的文献求助30
4秒前
陈秋禹发布了新的文献求助10
5秒前
科研通AI6应助bnvgx采纳,获得10
5秒前
浮游应助派大星采纳,获得10
5秒前
5秒前
今后应助luchang123qq采纳,获得10
6秒前
6秒前
uniseen发布了新的文献求助10
7秒前
7秒前
汤飞柏发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
wzy发布了新的文献求助10
9秒前
9秒前
9秒前
静乖乖发布了新的文献求助10
9秒前
蜜桃奇迹发布了新的文献求助10
9秒前
轻薄的电脑应助蔬菜狗狗采纳,获得20
9秒前
虚心十三发布了新的文献求助10
10秒前
luchong发布了新的文献求助30
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978