A Hybrid Prediction Model for Pumping Well System Efficiency Based on Stacking Integration Strategy

堆积 计算机科学 材料科学 生物系统 化学 生物 有机化学
作者
Biao Ma,Shimin Dong
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/8868949
摘要

The current prediction model for the system efficiency of pumping units primarily relies on a mechanistic approach. However, this approach incorporates numerous unnecessary factors, thereby, increasing the cost associated with predictions. With the improvement of the oil field database, the available information is increasing. Some scholars propose a prediction model based on a single neural network, however, such models face challenges in effectively capturing complex data, resulting in lower prediction accuracy and limited resistance to interference. To solve the above problems, the study proposes a novel stacking integrated learning prediction model, which incorporates fivefold cross‐validation. First, the magnitude of the correlation coefficient was quantified using the Pearson correlation coefficient. Second, the impact and predictive features were normalized. Final, convolutional neural network (CNN), recurrent neural network (RNN), Long Short‐Term Memory network (LSTM), gated recurrent unit (GRU), and transformer are used as the base models, and fully connected neural network (FNN) is used as the metamodel. Each base model was trained by fivefold cross‐validation, and the predicted values of each fold were stacked by rows. Next, the predicted values of each base model are stacked by columns as input variables to the metamodel and metamodel learning is performed, and the stacking integrated learning prediction model based on fivefold crossover validation is established. To validate the accuracy of the model, we selected 5,000 actual well parameters, including 26 impact features and one predictive feature, for comparative analysis. This analysis presents the maximum percentage reduction in mean square error (MSE), mean absolute error (MAE), and root‐mean‐square error (RMSE) of our proposed integrated learning model concerning a single neural network prediction model as 28.26%, 24.40%, and 15.66%, respectively. The maximum percentage improvement in R 2 is 17.74%. It shows that our proposed integrated learning prediction model has high prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冉木木完成签到,获得积分10
刚刚
改之完成签到,获得积分10
刚刚
平常匪发布了新的文献求助10
刚刚
和谐代灵完成签到,获得积分10
刚刚
上官若男应助CN00016采纳,获得10
刚刚
立军发布了新的文献求助10
刚刚
刚刚
al完成签到,获得积分10
1秒前
powder完成签到,获得积分10
2秒前
丘比特应助静静采纳,获得10
2秒前
谦让的冰海完成签到,获得积分10
2秒前
荒漠拟步甲完成签到,获得积分10
2秒前
陈槊诸发布了新的文献求助10
2秒前
zz完成签到,获得积分10
3秒前
3秒前
麦乐迪完成签到 ,获得积分10
3秒前
陈小青发布了新的文献求助10
4秒前
5秒前
桐桐应助潘煜林采纳,获得10
5秒前
喵典娜发布了新的文献求助10
5秒前
6秒前
伯赏涵雁发布了新的文献求助10
6秒前
6秒前
混子完成签到,获得积分10
7秒前
7秒前
充电宝应助依人如梦采纳,获得10
8秒前
mark发布了新的文献求助10
9秒前
VanessaW发布了新的文献求助10
9秒前
科研通AI6应助无疾而终采纳,获得10
10秒前
10秒前
10秒前
wanzhao完成签到,获得积分10
11秒前
云墨完成签到 ,获得积分10
11秒前
小蘑菇应助小王采纳,获得10
11秒前
11秒前
wlkk完成签到,获得积分10
12秒前
zz完成签到 ,获得积分10
12秒前
思源应助王盼采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618857
求助须知:如何正确求助?哪些是违规求助? 4703798
关于积分的说明 14923864
捐赠科研通 4758637
什么是DOI,文献DOI怎么找? 2550264
邀请新用户注册赠送积分活动 1513097
关于科研通互助平台的介绍 1474401