67 Precision identification and weight assessment of cattle using supervised machine learning on body surface keypoints

鉴定(生物学) 人工智能 体重 曲面(拓扑) 计算机科学 模式识别(心理学) 机器学习 生物 数学 植物 内分泌学 几何学
作者
Guilherme Lobato Menezes,Ariana Negreiro,Rafael Ferreira,Shogo Higaki,Enrico Casella,Anderson Antônio Carvalho Alves,João Ricardo Rebouças Dórea
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:102 (Supplement_3): 310-311
标识
DOI:10.1093/jas/skae234.354
摘要

Abstract Computer vision systems (CVS) offer identification solutions for animals with distinct coat patterns, but are less effective for solid-colored herds. In addition, they can be used to measure critical phenotypes, such as body weight (BW). Providing both BW and identification for solid-colored animals can help farmers make decisions. This study aimed to 1) develop an automatic CVS capable of identifying using the Euclidean distance between keypoints located at specific anatomical landmarks (e.g., bony prominences), and 2) predict the BW using features extracted from these keypoints. The keypoint model was trained to identify seven keypoints per cow, located at the left and right hips, left and right pin bones, tail head, sacral, and cervical vertebrae. These locations remain constant as body condition score of a cow changes. The Euclidean distance between these keypoints was used to generate biometric features for each cow. The keypoint detection model was trained using 3,928 images over 900 epochs with a batch size of 14 and validated using 391 images. This trained model was used to predict keypoints on a different set of 41 cows over 5 d, resulting in a total of 6,944 images which correspond to the dataset for cow identification. The Random Forest (RF) algorithm for cow identification was trained with the first 4 d (5,376 images), and the last day served as the test set (1,568 images). For the cow identification, a RF algorithm was employed on the Euclidean distance of the keypoints. The hyperparameters were determined through a grid search on the training set, utilizing 5-fold cross-validation. The hyperparameters ‘mtry’ (which ranged from 1 to 10) and ‘ntree’ (which ranged from 250 to 500, in increments of 50) were optimized. For the second objective, due to the completely new environment, the keypoint model was fine-tuned using transfer learning for 240 epochs with a batch size of 14, utilizing 310 images. The model predicted keypoints in 1,593 images from different beef-on-dairy animals. This dataset was used to train the BW prediction model. The Euclidean distances from the predicted images and sex were used as features. A RF model was trained using a leave-one-animal-out cross-validation approach. The hyperparameters were determined through a grid search on the training set, using 10-fold cross-validation. The ‘mtry’ parameter ranged from 2 to 16, in increments of 2. For animal identification, the model achieved an accuracy, precision, recall, and F1-score of 92.7%, 89.0%, 90.2%, and 92.7%, respectively. To predict BW, the RF model achieved an R² of 0.86 and a root mean squared prediction error of 36.9 kg, representing 6.7% of the observed values average. These results suggest that keypoints located on the dorsal body surface can identify and weigh individual animals, even those lacking distinct coat color patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助真的困采纳,获得10
1秒前
小川发布了新的文献求助24
1秒前
jiajia完成签到,获得积分10
1秒前
小二郎应助纪欣静采纳,获得10
2秒前
皮皮发布了新的文献求助10
3秒前
深情安青应助焦糖玛奇朵采纳,获得10
4秒前
YANYAN发布了新的文献求助10
5秒前
大肥羊完成签到 ,获得积分20
5秒前
11秒前
11秒前
可爱的函函应助edtaa采纳,获得10
14秒前
14秒前
传奇3应助小熊和明珠采纳,获得10
14秒前
yillin发布了新的文献求助10
15秒前
纪欣静发布了新的文献求助10
16秒前
wanci应助Chenzhs采纳,获得10
17秒前
空白完成签到 ,获得积分10
17秒前
菜菜1133发布了新的文献求助10
18秒前
lixc发布了新的文献求助10
18秒前
SharonEggy发布了新的文献求助10
19秒前
anlikek发布了新的文献求助10
21秒前
月亮不知道完成签到 ,获得积分10
24秒前
26秒前
26秒前
Luu完成签到 ,获得积分10
27秒前
28秒前
小二郎应助π.采纳,获得10
28秒前
edtaa发布了新的文献求助10
30秒前
lixc完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
SharonEggy完成签到,获得积分10
33秒前
advance完成签到,获得积分10
33秒前
鲤黎黎发布了新的文献求助10
33秒前
祥辉NCU完成签到,获得积分10
35秒前
SciGPT应助从容的沛槐采纳,获得10
36秒前
小小li发布了新的文献求助10
36秒前
38秒前
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247606
求助须知:如何正确求助?哪些是违规求助? 2890926
关于积分的说明 8265247
捐赠科研通 2559191
什么是DOI,文献DOI怎么找? 1387904
科研通“疑难数据库(出版商)”最低求助积分说明 650658
邀请新用户注册赠送积分活动 627495