67 Precision identification and weight assessment of cattle using supervised machine learning on body surface keypoints

鉴定(生物学) 人工智能 体重 曲面(拓扑) 计算机科学 模式识别(心理学) 机器学习 生物 数学 植物 内分泌学 几何学
作者
Guilherme Lobato Menezes,Ariana Negreiro,Rafael Ferreira,Shogo Higaki,Enrico Casella,Anderson Antônio Carvalho Alves,João Ricardo Rebouças Dórea
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:102 (Supplement_3): 310-311
标识
DOI:10.1093/jas/skae234.354
摘要

Abstract Computer vision systems (CVS) offer identification solutions for animals with distinct coat patterns, but are less effective for solid-colored herds. In addition, they can be used to measure critical phenotypes, such as body weight (BW). Providing both BW and identification for solid-colored animals can help farmers make decisions. This study aimed to 1) develop an automatic CVS capable of identifying using the Euclidean distance between keypoints located at specific anatomical landmarks (e.g., bony prominences), and 2) predict the BW using features extracted from these keypoints. The keypoint model was trained to identify seven keypoints per cow, located at the left and right hips, left and right pin bones, tail head, sacral, and cervical vertebrae. These locations remain constant as body condition score of a cow changes. The Euclidean distance between these keypoints was used to generate biometric features for each cow. The keypoint detection model was trained using 3,928 images over 900 epochs with a batch size of 14 and validated using 391 images. This trained model was used to predict keypoints on a different set of 41 cows over 5 d, resulting in a total of 6,944 images which correspond to the dataset for cow identification. The Random Forest (RF) algorithm for cow identification was trained with the first 4 d (5,376 images), and the last day served as the test set (1,568 images). For the cow identification, a RF algorithm was employed on the Euclidean distance of the keypoints. The hyperparameters were determined through a grid search on the training set, utilizing 5-fold cross-validation. The hyperparameters ‘mtry’ (which ranged from 1 to 10) and ‘ntree’ (which ranged from 250 to 500, in increments of 50) were optimized. For the second objective, due to the completely new environment, the keypoint model was fine-tuned using transfer learning for 240 epochs with a batch size of 14, utilizing 310 images. The model predicted keypoints in 1,593 images from different beef-on-dairy animals. This dataset was used to train the BW prediction model. The Euclidean distances from the predicted images and sex were used as features. A RF model was trained using a leave-one-animal-out cross-validation approach. The hyperparameters were determined through a grid search on the training set, using 10-fold cross-validation. The ‘mtry’ parameter ranged from 2 to 16, in increments of 2. For animal identification, the model achieved an accuracy, precision, recall, and F1-score of 92.7%, 89.0%, 90.2%, and 92.7%, respectively. To predict BW, the RF model achieved an R² of 0.86 and a root mean squared prediction error of 36.9 kg, representing 6.7% of the observed values average. These results suggest that keypoints located on the dorsal body surface can identify and weigh individual animals, even those lacking distinct coat color patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dinhogj完成签到,获得积分10
刚刚
zyw完成签到 ,获得积分10
4秒前
王小凡完成签到 ,获得积分10
6秒前
CAOHOU应助dddd采纳,获得10
8秒前
Smiling完成签到 ,获得积分10
13秒前
小林神完成签到,获得积分10
14秒前
xiaofenzi完成签到,获得积分10
18秒前
mix完成签到 ,获得积分10
24秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
Banff完成签到,获得积分10
27秒前
27秒前
baomingqiu完成签到 ,获得积分10
29秒前
MS903完成签到 ,获得积分10
30秒前
哈哈哈发布了新的文献求助10
30秒前
fuws完成签到 ,获得积分10
30秒前
关外李少发布了新的文献求助10
31秒前
xzy998应助科研通管家采纳,获得10
32秒前
爆米花应助科研通管家采纳,获得10
32秒前
jueshadi完成签到 ,获得积分10
34秒前
轻语完成签到 ,获得积分10
36秒前
38秒前
star完成签到,获得积分10
38秒前
小李完成签到 ,获得积分10
39秒前
CJW完成签到 ,获得积分10
40秒前
华理附院孙文博完成签到 ,获得积分10
40秒前
zyz完成签到,获得积分10
42秒前
fomo完成签到,获得积分10
45秒前
ding应助cavendipeng采纳,获得10
46秒前
终于花开日完成签到 ,获得积分10
48秒前
K. G.完成签到,获得积分0
48秒前
沙里飞完成签到 ,获得积分10
49秒前
bing完成签到,获得积分10
51秒前
友好语风完成签到,获得积分10
52秒前
53秒前
bigpluto完成签到,获得积分10
54秒前
K先生完成签到 ,获得积分10
56秒前
CLTTTt完成签到,获得积分10
56秒前
易水寒完成签到 ,获得积分10
56秒前
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015