癫痫发生
海马结构
胶质增生
海马体
生物
转录组
海马硬化
癫痫
颞叶
神经科学
小胶质细胞
红藻氨酸
基因表达
基因
遗传学
炎症
免疫学
谷氨酸受体
受体
作者
Quanlei Liu,Chunhao Shen,Yang Dai,Ting Tang,Changkai Hou,Hongyi Yang,Yihe Wang,Jinkun Xu,Yongchang Lu,Yunming Wang,Yongzhi Shan,Penghu Wei,Guoguang Zhao
标识
DOI:10.1186/s40364-024-00636-3
摘要
Abstract Background Temporal lobe epilepsy (TLE) is among the most common types of epilepsy and often leads to cognitive, emotional, and psychiatric issues due to the frequent seizures. A notable pathological change related to TLE is hippocampal sclerosis (HS), which is characterized by neuronal loss, gliosis, and an increased neuron fibre density. The mechanisms underlying TLE-HS development remain unclear, but the reactive transcriptomic changes in glial cells and neurons of the hippocampus post-epileptogenesis may provide insights. Methods To induce TLE, 200 nl of kainic acid (KA) was stereotactically injected into the hippocampal CA1 region of mice, followed by a 7-day postinjection period. Single-cell RNA sequencing (ScRNA-seq), single-nucleus RNA sequencing (SnRNA-seq), and Xenium-based spatial transcriptomics analyses were employed to evaluate the changes in mRNA expression in glial cells and neurons. Results From the ScRNA-seq and SnRNA-seq data, 31,390 glial cells and 48,221 neuronal nuclei were identified. Analysis of the differentially expressed genes (DEGs) revealed significant transcriptomic alterations in the hippocampal cells of mice with TLE, affecting hundreds to thousands of mRNAs and their signalling pathways. Enrichment analysis indicated notable activation of stress and inflammatory pathways in the TLE hippocampus, while pathways related to axonal development and neural support were suppressed. Xenium analysis demonstrated the expression of all 247 genes across mouse brain sections, revealing the spatial distributions of their expression in 27 cell types. Integrated analysis of the DEGs identified via the three sequencing techniques revealed that Spp1 , Trem2 , and Cd68 were upregulated in all glial cell types and in the Xenium data; Penk , Sorcs3 , and Plekha2 were upregulated in all neuronal cell types and in the Xenium data; and Tle4 and Sipa1l3 were downregulated in all glial cell types and in the Xenium data. Conclusion In this study, a high-resolution single-cell transcriptomic atlas of the hippocampus in mice with TLE was established, revealing potential intrinsic mechanisms driving TLE-associated inflammatory activation and altered cell interactions. These findings provide valuable insights for further exploration of HS development and epileptogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI