亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Student Apartment Access Control System Based on MTCNN-FaceNet Algorithm

计算机科学 公寓 访问控制 控制(管理) 算法 计算机安全 人工智能 工程类 土木工程
作者
Jing Zhang
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
标识
DOI:10.1142/s1469026824500226
摘要

In response to the security management issues of student apartments, a study is conducted on a student apartment access control system based on multitasking cascaded convolutional networks and FaceNet. Firstly, a face detection model is built based on an improved multi-task cascaded convolutional network, and then a face recognition model is built using FaceNet. The results showed that the detection accuracy of the multi-task cascaded convolutional network using the improved non-maximum suppression algorithm was 98.7%, which was higher than the traditional multi-task cascaded convolutional network and effectively improved the detection performance of the multi-task cascaded convolutional network. The face detection model based on the improved multi-task cascaded convolutional network had the shortest average detection time of 361[Formula: see text]s, the highest average detection accuracy of 90.3%, an accuracy of 99%, a recall rate of 98.5%, and an F1 value of 99%. While maintaining high detection efficiency, it also ensured the accuracy of detection. The average accuracy of the mask detection method based on the MobileNet V2 network was relatively high, at 98.96%. The facial recognition model based on FaceNet achieved a recognition accuracy of 99.15% for faces without masks and 92.04% for faces with masks, with the highest accuracy and recall rates of 99.3% and 99.6%. The model constructed in the study has good application effects in face detection, which helps to improve the security of the student apartment access control system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLL完成签到,获得积分10
2秒前
余子旋发布了新的文献求助10
3秒前
暖暖完成签到,获得积分10
3秒前
8秒前
13秒前
18秒前
在水一方应助酷酷笑容采纳,获得10
18秒前
余子旋完成签到,获得积分20
20秒前
22秒前
24秒前
26秒前
在水一方应助余子旋采纳,获得10
26秒前
酷酷笑容发布了新的文献求助10
31秒前
38秒前
Wei发布了新的文献求助10
41秒前
41秒前
45秒前
46秒前
49秒前
54秒前
精明凡双完成签到,获得积分10
55秒前
55秒前
59秒前
1分钟前
1分钟前
生活扑面而来的善意完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得150
1分钟前
葵花籽发布了新的文献求助10
1分钟前
1分钟前
葵花籽完成签到,获得积分10
1分钟前
shun发布了新的文献求助10
1分钟前
1分钟前
酷酷笑容发布了新的文献求助10
1分钟前
轻松的万天完成签到 ,获得积分10
1分钟前
国色不染尘完成签到,获得积分10
1分钟前
Jamie_J完成签到,获得积分10
1分钟前
英俊的铭应助shun采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935240
求助须知:如何正确求助?哪些是违规求助? 4202735
关于积分的说明 13058621
捐赠科研通 3977585
什么是DOI,文献DOI怎么找? 2179549
邀请新用户注册赠送积分活动 1195611
关于科研通互助平台的介绍 1107190