Student Apartment Access Control System Based on MTCNN-FaceNet Algorithm

计算机科学 公寓 访问控制 控制(管理) 算法 计算机安全 人工智能 工程类 土木工程
作者
Jing Zhang
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
标识
DOI:10.1142/s1469026824500226
摘要

In response to the security management issues of student apartments, a study is conducted on a student apartment access control system based on multitasking cascaded convolutional networks and FaceNet. Firstly, a face detection model is built based on an improved multi-task cascaded convolutional network, and then a face recognition model is built using FaceNet. The results showed that the detection accuracy of the multi-task cascaded convolutional network using the improved non-maximum suppression algorithm was 98.7%, which was higher than the traditional multi-task cascaded convolutional network and effectively improved the detection performance of the multi-task cascaded convolutional network. The face detection model based on the improved multi-task cascaded convolutional network had the shortest average detection time of 361[Formula: see text]s, the highest average detection accuracy of 90.3%, an accuracy of 99%, a recall rate of 98.5%, and an F1 value of 99%. While maintaining high detection efficiency, it also ensured the accuracy of detection. The average accuracy of the mask detection method based on the MobileNet V2 network was relatively high, at 98.96%. The facial recognition model based on FaceNet achieved a recognition accuracy of 99.15% for faces without masks and 92.04% for faces with masks, with the highest accuracy and recall rates of 99.3% and 99.6%. The model constructed in the study has good application effects in face detection, which helps to improve the security of the student apartment access control system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
woyaojiayou完成签到,获得积分10
刚刚
研友_alan完成签到,获得积分10
2秒前
2秒前
chenyichi完成签到,获得积分20
3秒前
伶俐的血茗完成签到,获得积分10
4秒前
4秒前
坦率曼梅完成签到,获得积分10
4秒前
楼北完成签到,获得积分0
4秒前
海贼学术发布了新的文献求助10
5秒前
lico完成签到,获得积分10
8秒前
8秒前
8秒前
香蕉觅云应助123采纳,获得10
9秒前
toki完成签到,获得积分10
10秒前
11秒前
玉婷发布了新的文献求助10
12秒前
阔阔kkkk应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得30
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
15秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得30
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
fyattojsk应助科研通管家采纳,获得10
16秒前
十七完成签到 ,获得积分10
16秒前
16秒前
16秒前
chenqiumu应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305475
求助须知:如何正确求助?哪些是违规求助? 4451562
关于积分的说明 13852455
捐赠科研通 4339004
什么是DOI,文献DOI怎么找? 2382268
邀请新用户注册赠送积分活动 1377388
关于科研通互助平台的介绍 1344904