已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Student Apartment Access Control System Based on MTCNN-FaceNet Algorithm

计算机科学 公寓 访问控制 控制(管理) 算法 计算机安全 人工智能 工程类 土木工程
作者
Jing Zhang
出处
期刊:International Journal of Computational Intelligence and Applications [World Scientific]
标识
DOI:10.1142/s1469026824500226
摘要

In response to the security management issues of student apartments, a study is conducted on a student apartment access control system based on multitasking cascaded convolutional networks and FaceNet. Firstly, a face detection model is built based on an improved multi-task cascaded convolutional network, and then a face recognition model is built using FaceNet. The results showed that the detection accuracy of the multi-task cascaded convolutional network using the improved non-maximum suppression algorithm was 98.7%, which was higher than the traditional multi-task cascaded convolutional network and effectively improved the detection performance of the multi-task cascaded convolutional network. The face detection model based on the improved multi-task cascaded convolutional network had the shortest average detection time of 361[Formula: see text]s, the highest average detection accuracy of 90.3%, an accuracy of 99%, a recall rate of 98.5%, and an F1 value of 99%. While maintaining high detection efficiency, it also ensured the accuracy of detection. The average accuracy of the mask detection method based on the MobileNet V2 network was relatively high, at 98.96%. The facial recognition model based on FaceNet achieved a recognition accuracy of 99.15% for faces without masks and 92.04% for faces with masks, with the highest accuracy and recall rates of 99.3% and 99.6%. The model constructed in the study has good application effects in face detection, which helps to improve the security of the student apartment access control system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛哥发布了新的文献求助10
2秒前
3秒前
6秒前
猜不猜不完成签到 ,获得积分10
6秒前
菜芽君完成签到,获得积分10
6秒前
杜飞发布了新的文献求助10
6秒前
文静的可仁完成签到,获得积分10
7秒前
fff完成签到 ,获得积分10
7秒前
我吃小饼干完成签到 ,获得积分10
9秒前
11秒前
grace完成签到 ,获得积分10
11秒前
zcm1999完成签到,获得积分10
11秒前
hauru完成签到,获得积分10
15秒前
李爱国应助香菜包采纳,获得10
15秒前
momo完成签到,获得积分10
21秒前
THEO完成签到,获得积分10
21秒前
Unlisted完成签到,获得积分10
23秒前
Cope完成签到 ,获得积分10
24秒前
24秒前
小白完成签到,获得积分10
25秒前
魔幻以菱完成签到 ,获得积分10
26秒前
xxx发布了新的文献求助10
29秒前
蛙蛙应助U87采纳,获得30
29秒前
加菲丰丰完成签到,获得积分0
30秒前
曾予嘉完成签到 ,获得积分10
33秒前
揽月完成签到,获得积分10
36秒前
小袁冲冲冲完成签到,获得积分10
37秒前
小二郎应助陶醉紫菜采纳,获得10
37秒前
gura完成签到 ,获得积分10
38秒前
21完成签到 ,获得积分10
39秒前
39秒前
桐桐应助曾予嘉采纳,获得10
40秒前
xiaohan,JIA完成签到,获得积分10
43秒前
充电宝应助杜飞采纳,获得10
46秒前
46秒前
bigan完成签到,获得积分20
47秒前
顾子墨发布了新的文献求助10
52秒前
菲1208完成签到,获得积分10
52秒前
53秒前
哇呀呀完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356235
求助须知:如何正确求助?哪些是违规求助? 4488073
关于积分的说明 13971611
捐赠科研通 4388906
什么是DOI,文献DOI怎么找? 2411290
邀请新用户注册赠送积分活动 1403833
关于科研通互助平台的介绍 1377655