Student Apartment Access Control System Based on MTCNN-FaceNet Algorithm

计算机科学 公寓 访问控制 控制(管理) 算法 计算机安全 人工智能 工程类 土木工程
作者
Jing Zhang
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
标识
DOI:10.1142/s1469026824500226
摘要

In response to the security management issues of student apartments, a study is conducted on a student apartment access control system based on multitasking cascaded convolutional networks and FaceNet. Firstly, a face detection model is built based on an improved multi-task cascaded convolutional network, and then a face recognition model is built using FaceNet. The results showed that the detection accuracy of the multi-task cascaded convolutional network using the improved non-maximum suppression algorithm was 98.7%, which was higher than the traditional multi-task cascaded convolutional network and effectively improved the detection performance of the multi-task cascaded convolutional network. The face detection model based on the improved multi-task cascaded convolutional network had the shortest average detection time of 361[Formula: see text]s, the highest average detection accuracy of 90.3%, an accuracy of 99%, a recall rate of 98.5%, and an F1 value of 99%. While maintaining high detection efficiency, it also ensured the accuracy of detection. The average accuracy of the mask detection method based on the MobileNet V2 network was relatively high, at 98.96%. The facial recognition model based on FaceNet achieved a recognition accuracy of 99.15% for faces without masks and 92.04% for faces with masks, with the highest accuracy and recall rates of 99.3% and 99.6%. The model constructed in the study has good application effects in face detection, which helps to improve the security of the student apartment access control system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青春完成签到,获得积分10
刚刚
惠惠完成签到 ,获得积分10
刚刚
琪求好运发布了新的文献求助10
2秒前
热心梦山发布了新的文献求助10
3秒前
科研通AI2S应助文艺烧鹅采纳,获得10
4秒前
今后应助踏实的白羊采纳,获得100
4秒前
4秒前
小小完成签到,获得积分10
5秒前
zhouxw27完成签到,获得积分10
5秒前
醉熏的伊完成签到,获得积分10
8秒前
aaaabc完成签到 ,获得积分10
10秒前
10秒前
虚幻傲珊发布了新的文献求助10
10秒前
13秒前
changping应助畅快的觅风采纳,获得10
14秒前
14秒前
15秒前
Dr_J发布了新的文献求助10
18秒前
19秒前
赵小满发布了新的文献求助10
20秒前
20秒前
牛牛发布了新的文献求助10
21秒前
23秒前
24秒前
文艺烧鹅完成签到,获得积分20
25秒前
27秒前
chlc6973完成签到,获得积分10
27秒前
27秒前
28秒前
高高完成签到,获得积分10
28秒前
Cloud发布了新的文献求助10
29秒前
29秒前
yaooo完成签到 ,获得积分10
30秒前
何东霖发布了新的文献求助10
30秒前
药学小团子完成签到,获得积分10
31秒前
32秒前
dyc发布了新的文献求助10
32秒前
无昵称完成签到 ,获得积分10
33秒前
小土豆完成签到 ,获得积分10
33秒前
你好发布了新的文献求助30
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295803
求助须知:如何正确求助?哪些是违规求助? 4445172
关于积分的说明 13835666
捐赠科研通 4329791
什么是DOI,文献DOI怎么找? 2376755
邀请新用户注册赠送积分活动 1372067
关于科研通互助平台的介绍 1337408